


These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://azul.com


These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

OpenJDK 
Migration



These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

OpenJDK 
Migration

Azul Special Edition

by Simon Ritter



These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

OpenJDK Migration For Dummies®, Azul Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2023 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any 
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, 
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without 
the prior written permission of the Publisher. Requests to the Publisher for permission should be 
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com, 
Making Everything Easier, and related trade dress are trademarks or registered trademarks of 
John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not 
be used without written permission. Azul, Zulu, Azul Platform Core, Azul Platform Prime, Azul 
Vulnerability Detection, and Foojay are trademarks owned by Azul Systems, Inc. All other 
trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated 
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE 
USED THEIR BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS 
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF 
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION 
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES, WRITTEN 
SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT THAT AN 
ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/
OR POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER 
AND AUTHORS ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR 
PRODUCT MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH 
THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING PROFESSIONAL 
SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR 
YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE. FURTHER, 
READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED 
OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ. 
NEITHER THE PUBLISHER NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY 
OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, 
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, or how to create a custom For 
Dummies book for your business or organization, please contact our Business Development 
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/
custompub. For information about licensing the For Dummies brand for products or services, 
contact BrandedRights&Licenses@Wiley.com.

ISBN 978-1-394-20672-8 (pbk); ISBN 978-1-394-20673-5 (ebk)

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the following:
Editor: Elizabeth Kuball

Acquisitions Editor: Traci Martin

Editorial Manager: Rev Mengle

Client Account Manager:  
Cynthia Tweed

Production Editor:  
Saikarthick Kumarasamy

Special Help: Faithe Wempen

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com
http://Dummies.com


Table of Contents      v

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION ............................................................................................... 1

About This Book ................................................................................... 1
Foolish Assumptions ............................................................................ 2
Icons Used in This Book ....................................................................... 2
Where to Go from Here ....................................................................... 3

CHAPTER 1:	 Replacing	Oracle	Java	SE in	the	Enterprise ............. 5
Untangling Oracle Java SE Licensing and Pricing Complexity ......... 6
Taking Stock of Oracle’s Java SE Universal Subscription ................. 7
Replacing the Oracle JDK with OpenJDK ............................................ 8
Understanding TCK Testing and What It Means for Migration ....... 9

CHAPTER 2:	 Preparing	for	Your Migration .......................................... 11
Identifying Migration Goals ............................................................... 11
Introducing the Three-Phase Migration Process ............................ 12
Making an Inventory of JDKs Currently in Use ................................ 12

Building your inventory ................................................................ 13
Deciding which JDKs to include ................................................... 13
Deciding what information to collect about each JDK .............. 14

Recognizing the Risks of Older Technologies ................................. 15
Very old versions of Java .............................................................. 16
Oracle JDK-specific features ........................................................ 16

Some Less-Common Considerations ............................................... 20
Font rendering ............................................................................... 20
Lucida fonts ................................................................................... 20
NTLM authentication .................................................................... 20
Custom security configurations .................................................. 21
Java Access Bridge......................................................................... 21
Java Control Panel ......................................................................... 21
SNMP JMX Gateway ...................................................................... 21
Version string incompatibility ...................................................... 22
Windows registry keys .................................................................. 22

Handling Third-Party Applications ................................................... 22

CHAPTER 3:	 Migrating	Your	Applications ............................................. 25
Reviewing Available Formats ............................................................ 25

Windows ......................................................................................... 26
Linux ............................................................................................... 26



vi      OpenJDK	Migration	For	Dummies,	Azul	Special	Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

macOS ............................................................................................ 26
Docker ............................................................................................ 27

Performing the Update ...................................................................... 27
Testing Your Applications .................................................................. 29

CHAPTER 4:	 Evaluating	OpenJDK	Distribution	Providers ........ 31
Differentiating Between OpenJDK Distributions ............................ 32
Answering Common Questions ........................................................ 33

Will I lose functionality if I switch?............................................... 34
What about Oracle applications? ................................................ 34
What’s my risk of regression when using alternatives 
to Oracle? ....................................................................................... 34
Will I need to move to the latest Java JDK version? ................... 35
Will I need to recompile my application? ................................... 35
Will I need to rewrite or modify my application code? ............. 35

Comparing OpenJDK Distributions .................................................. 36

CHAPTER 5:	 Exploring	the	Benefits	of	Commercial	
Support .............................................................................................. 39
Applying Quarterly Updates .............................................................. 40
Protecting Older JVMs ........................................................................ 41
Reducing Risk with Stabilized Security Builds ................................. 43
Updating Bundled Technologies ...................................................... 44
Encountering New Bugs .................................................................... 45
Understanding and Addressing GPL Contamination ..................... 46
Planning with Expert Guidance ........................................................ 48
Leveraging Support for a Competitive Advantage ......................... 49

CHAPTER 6:	 Choosing	the	Right	Java Partner ................................... 51
Evaluating a Track Record ................................................................. 52
Considering Customer References .................................................. 53
Deciding on a Service Level ............................................................... 53

CHAPTER 7: Ten Questions for Your Next Request 
for Information ........................................................................... 55

APPENDIX A: A BRIEF HISTORY OF JAVA .................................... 59

APPENDIX B: OPTIMIZING THE JVM FOR  
LOWER LATENCY, HIGHER THROUGHPUT, 
AND FASTER WARM-UP ........................................................................... 61

APPENDIX C: RUNTIME SECURITY ................................................... 71



Introduction      1

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Modern business runs on Java. It’s the programming 
 language of choice for large-scale applications, whether 
they’re running in the cloud or in a private data center. 

Despite being nearly 30 years old, Java remains one of the most 
widely used programming languages in the world thanks to its 
versatility, reliability, and stability. Java is also far more pervasive 
than meets the eye. The Java platform forms the foundation of 
derivative languages like Kotlin and Scala, as well as frameworks 
like Hibernate and Spring and platforms like Cassandra, Hadoop, 
and Kafka.

Much of Java’s appeal stems from its open nature, both in terms 
of the way it’s defined through the Java Community Process (JCP) 
and in terms of the way it’s developed under the open-source 
OpenJDK project. By paying for commercial support, compa-
nies can enjoy all the benefits of open-source software with the 
stability, reliability, and service they expect from an enterprise 
vendor. Since Oracle’s acquisition of Sun Microsystems in 2010, 
many companies have subscribed to Oracle Java SE for commer-
cial support.

However, lately, a series of licensing and pricing changes for  Oracle 
Java SE has prompted many companies to move to alternative 
distributions of OpenJDK. Interest in OpenJDK, and in  commercial 
support for OpenJDK, has intensified over the last four years as 
Oracle Java SE has become increasingly more expensive.

In this book, you find the details of migrating to an OpenJDK dis-
tribution, either from the Oracle JDK or from another OpenJDK 
distribution. You also see how to evaluate different distributions 
and support offerings and choose the distribution that’s right for 
your organization.

About This Book
OpenJDK Migration For Dummies is written first and foremost for 
the application owners, IT operations teams, and engineers who 
are responsible for undertaking a migration. Migrating from one 
distribution of OpenJDK to another is straightforward for the 



2      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

majority of applications, but some factors may require attention. 
Forewarned is forearmed, and the information in this book will 
help you complete a successful migration. At Azul, we’ve learned 
from hundreds of migrations and believe we can literally write the 
book on migrating without risks (or at least with very minimal 
ones). And so we are!

Foolish Assumptions
In writing this — or any book — authors inevitably end up mak-
ing assumptions about their readers  — sometimes mistakenly. 
Here are some of our beliefs about you:

 » You’re familiar with open-source software (OSS).

 » You care enough about your Java applications to want to run 
them on the very best Java Development Kit (JDK) available.

 » You’re cost conscious. You’ll pay for quality service, but you 
expect to be charged a fair price.

 » You seek out technology providers who offer true 
partnerships.

Icons Used in This Book
Following the convention of other For Dummies books, we put 
icons in the margins of the book to make it easier to find the 
material you’re most interested in. Here’s a guide to what those 
little pictures mean:

We use the Tip icon to flag information that will make your 
migration easier and may save you time and effort down the road.

We’re confident some readers will enjoy the technical nitty-
gritty as much as we do, but others will appreciate knowing that 
there are sections that are okay to skip. Paragraphs marked with 
the Technical Stuff icon contain details that go beyond the basic 
understanding that most readers want to gain.



Introduction      3

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

We use the Warning icon when we cover old technologies that 
may trip you up. Make sure you know whether they’re included in 
your Java footprint before you begin your migration.

We use the Remember icon to highlight the most important take-
aways. If you want the ultra-compressed version of this book, 
browse these icons.

Where to Go from Here
We’ve done our best to write this book from a neutral perspective. 
But let’s face it, we’re a little biased. We pride ourselves on offer-
ing the industry’s leading OpenJDK distribution with hundreds of 
millions of downloads and backed by the best support team in the 
business. If you’d like to learn more about Azul, we have some 
suggestions.

 » Azul Zulu Builds of OpenJDK (Zulu JDK or Zulu for short) are 
the Oracle JDK alternatives selected by hundreds of thou-
sands of Java developers, powering all manner of applica-
tions around the world.

 » Azul Platform Core, the largest provider of commercial 
support for OpenJDK, is trusted by the world’s most highly 
regarded businesses to provide critical Java updates. Find 
out more at www.azul.com/products/core.

 » Azul Platform Prime is our hyper-optimized runtime that 
maximizes performance while driving down infrastructure 
costs. Find out more at www.azul.com/products/prime.

 » Azul Vulnerability Detection is a way to ensure the maximum 
security for your Java Virtual Machine (JVM) and runtime 
libraries. Find out more at www.azul.com/products/
vulnerability-detection.

Finally, we couldn’t fit all the information we wanted to share on 
migrating to OpenJDK in an 80-page book, so we built a website 
(www.openjdk-migration.com) where you can find additional 
information, as well as helpful spreadsheets and sample workplans.

https://www.azul.com/products/core
https://www.azul.com/products/prime/
https://www.azul.com/products/vulnerability-detection/
https://www.azul.com/products/vulnerability-detection/
http://www.openjdk-migration.com


CHAPTER 1  Replacing Oracle Java SE in the Enterprise      5

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

 » Understanding the complex licensing and 
pricing of Oracle Java SE

 » Taking stock of Oracle’s Java SE licensing 
subscription

 » Replacing the Oracle JDK with OpenJDK

 » Understanding TCK testing and what it 
means for migration

Replacing Oracle Java 
SE in the Enterprise

One of Java’s most impressive characteristics has been its 
ability to evolve over nearly 30 years to address the needs 
of enterprise applications. This result is a combination of 

the open-source project OpenJDK, the specifications created 
through the Java Community Process (JCP), and the vibrant and 
active community of users. Java is the number-one language for 
overall development today, with more than 60 billion active Java 
Virtual Machines (JVMs) and 38 billion cloud-based JVMs.

Enterprises have become increasingly reliant on the Java platform 
in no small part because of its scalability to even the largest inter-
net and transactional workloads. To maximize their investments 
in Java, they’ve sought trusted advisors to provide commercial 
support to augment their own teams.

After Oracle acquired Sun Microsystems in 2010, it continued 
to deliver Java in a primarily free and flexible way, just as Sun 
had done. Things became more complicated in 2018, though, 
when Oracle changed how it licensed its distribution of the Java 
 Development Kit (JDK), which includes the Java Runtime Envi-
ronment (JRE) and the JVM, and provides a platform for running 
Java applications.



6      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

This chapter covers the challenges created as Oracle repeatedly 
changed how it priced its support services and licensed its JDK, 
leading many organizations to consider migrating to OpenJDK.

Untangling Oracle Java SE Licensing  
and Pricing Complexity

Oracle’s changes in the way it licences and prices its JDK in recent 
years have spurred lots of interest in OpenJDK.  This section 
reviews that chain of events.

In September 2017, Oracle announced significant changes as to 
how Java would be released moving forward. The new model, 
as approved by the OpenJDK governing board, provided a new 
release every six months (in March and in September). Developers 
had been requesting a more agile approach to developing the core 
Java platform for some time, and this change led to more features 
being added to Java — and more rapidly — than ever before.

This change in strategy also resulted in a major change to the 
way Oracle delivers updates and support. Instead of providing 
extended maintenance and support for all Java versions, only 
Long-Term Support (LTS) releases would qualify for that.

More changes came in June 2018, when Oracle announced its new 
licensing and pricing for JDK, which it bundled with the Java SE 
subscription.

A Java SE subscription included:

 » Certified compatible updates for performance, stability, and 
security updates

 » Security-only updates (curated updates)

 » Technical support

Paid support is a familiar component of open-source communi-
ties, and the change was accepted — but a move Oracle made three 
months later wasn’t. Oracle announced it would end free public 
updates for commercial use for Java 8 — which was then the most 
popular version of Java — in January 2019. Updates would still be 



CHAPTER 1  Replacing Oracle Java SE in the Enterprise      7

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

available with a subscription to Java SE; however, if you installed 
the updates without a subscription, you’d be liable to Oracle for 
the cost of the subscription.

Then, in April 2019, Oracle unveiled a new Java license: the Oracle 
Technology License Agreement for Oracle Java SE.

The cost for using Oracle Java under these new terms increased. 
Organizations like Cornell University began to take steps to min-
imize or eliminate their dependency on Oracle Java. In Cornell’s 
case, it published a blog post asking users of its network to unin-
stall Oracle Java from their computers and to install OpenJDK if 
they needed Java.

Oracle’s popularity with Java developers plummeted. According 
to a survey of 2,000 developers by Snyk (https://snyk.io), only  
34 percent reported using Oracle JDK in the second half of 2019 —  
down from 70 percent the year before.

On September 14, 2021, Oracle announced a new No-Fee Terms 
and Conditions (NFTC) license that partially rolled back the 
changes announced in 2019. A new LTS release would now be 
free under NFTC until one year after the next LTS release. This 
gave users a chance to transition their applications to the next 
release. The NFTC license was available for developing, testing, 
prototyping, and demonstrating applications and personal use of 
the  Oracle JDK or for use related to internal business operations. 
Oracle also shortened the time between LTS release from three 
years to two years.

The move was generally viewed as positive, but it had little effect 
on OpenJDK’s growing momentum.

Taking Stock of Oracle’s Java SE  
Universal Subscription

In this section, we cover Oracle’s fourth major change in four 
years — and the one that prompted the loudest outcry.

On January 23, 2023, Oracle quietly replaced the online link to  
the Oracle Java SE Subscription Global Price List with a link to a 
new Oracle Java SE Universal Subscription Global Price List.

https://snyk.io/


8      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The old pricing was based on a processor-count metric for serv-
ers and a named-user-plus metric for desktops. It was far from 
perfect. With the processor-count metric, the license cost was 
determined by multiplying a processor’s total number of cores by 
a core processor licensing factor specified by Oracle. The named-
user metric applied to all individuals authorized to use a program 
regardless of whether they were actively using it. These defini-
tions left the door open for uncomfortable conversations with 
Oracle reps who were famous for setting up meetings “to talk 
about your Java usage.” Unpleasant in themselves, these meet-
ings could be a prelude to painful Java audits.

The new pricing seemed straightforward. Instead of counting 
processors and authorized users, organizations needing an Oracle 
Java SE subscription would count their employees. But how? The 
fine print contained a complex definition and caused many exist-
ing customers to do a double take.

Employee-count metrics are not uncommon in the technology 
world. Companies like Dropbox, Okta, Salesforce, and Workday all 
charge per employee per month (PEPM). Oracle itself charges on 
a PEPM basis for products like Oracle Cloud HCM. But typically, 
PEPM pricing is tied to usage.

The new pricing for Oracle Java SE was disconnected from actual 
Java usage and could result in a massive price increase. The more 
employees, the larger the price increase. Some examples:

 » The Java subscription costs for a small 20-person company 
with one quad-core server and 20 Java desktops would triple.

 » A 100-person company with two quad-core servers and  
100 Java desktops would see a 328 percent price increase.

Replacing the Oracle JDK with OpenJDK
One question we’ve been asked a lot over the years is how diffi-
cult a migration will be. Behind this question, there is typically an 
assumption that the migration will be a heavy lift.

In fact, migrating to certified builds of OpenJDK can be very 
straightforward and simple for the vast majority of enterprises. 
If you’re migrating server applications, you’re not likely to 



CHAPTER 1  Replacing Oracle Java SE in the Enterprise      9

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

encounter any challenges. There are just a few potential issues, 
typically involving older, deprecated desktop technologies (see 
Chapter 2).

Migrating from Oracle JDK to an OpenJDK distribution is so 
straightforward because the Oracle JDK and OpenJDK distribu-
tions that companies like Amazon, Azul, BellSoft, and Red Hat 
provide are all built using the OpenJDK source code and undergo 
extensive compatibility testing. (Chapter 2 covers some additional 
Oracle JDK components that are not from the OpenJDK project.)

At its simplest, migration consists of installing the new Open-
JDK distribution and configuring your application to use it instead 
of the previously installed JDK. Ninety-nine percent of the time, 
your application will work perfectly.

This book covers the 1 percent of the time when something doesn’t 
work as expected, and explains how to avoid that or diagnose and 
fix it. Later chapters cover these corner cases exhaustively. But 
before getting into that, you may want to understand how Open-
JDK providers can be so sure that their distribution is a drop-in 
replacement for the Oracle JDK.

Understanding TCK Testing and  
What It Means for Migration

The Java Technology Compatibility Kit (TCK) was created to 
ensure compatibility between different implementations of the 
Java specification. It’s essential for Java’s portability — for deliv-
ering the “write once, run anywhere” promise. The TCK provides 
a high level of confidence that an application that runs on one 
TCK-tested distribution will run the same way on another distri-
bution that has also passed the TCK test suite.

Originally developed and licensed by Sun Microsystems, today the 
TCK suites are Oracle’s intellectual property and require an Oracle 
license.

To claim compatibility with Java SE, individual binaries within 
each OpenJDK distribution must pass the TCK suite associated 
with that version of Java. TCK suites consist of more than 100,000 
tests (about 126,000 tests for Java 8 and about 139,000 tests for 
Java 11).



10      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Examples of TCK tests include language and application program-
ming interface (API) tests, which verify that an implementation 
of Java meets the required specification of the syntax, semantics, 
and functionality of the language and its associated libraries. In 
addition, TCK tests for the JVM ensure compatibility across dif-
ferent operating systems and hardware architectures. TCK tests 
cover every aspect of the JDK, extending to features like printing, 
sound, and graphical interfaces.

Passing the TCK suite ensures that one distribution of a particular 
binary — say, JDK 17.0.7+7 — can be swapped for another distri-
bution of that same binary that also passed the TCK. In this way, 
Oracle JDK can be exchanged for Azul Zulu Builds of OpenJDK, for 
example.

Passing the TCK also carries an additional benefit critical for 
commercial use: Conforming implementations inherit the right 
to use all the intellectual property in the specification defining 
that Java version.

Thanks to TCK testing, enterprises have a choice of OpenJDK dis-
tributions to choose from. These distributions differ from each 
other in ways that we explain in Chapter 4. For now, the important 
thing to understand is that you have options, and your chances of 
finding a distribution that meets the exact needs of your organi-
zation are high.



CHAPTER 2  Preparing for Your Migration      11

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

 » Setting your goals for migration

 » Understanding the three-phase 
migration process

 » Identifying the risks of older technologies

Preparing for 
Your Migration

What are the most important things to do before starting 
your migration? In this chapter, we walk you through 
the recommended sequence of steps and the potential 

issues you should know about before you roll up your sleeves, fire 
up some scripts, and take your Java inventory.

Identifying Migration Goals
As in any other endeavor, the success or failure of a migration 
will be measured by how well you met your goals. What are you 
hoping to achieve?

There are several reasons why an organization may choose to 
migrate to an alternative OpenJDK distribution from Oracle. In 
addition to lowering the total cost of ownership (TCO) of Java 
apps, frameworks, platforms, and tools, common goals include 
receiving support for older versions of Java (such as Java 6 or 
7) that have reached their end of life, as well as minimizing the 
impact of a migration on application users and equal or better 
application performance.



12      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Many organizations poised to migrate wonder how long the pro-
cess will take. There isn’t a one-size-fits-all answer to that ques-
tion, though. The time needed for a migration depends on at least 
half a dozen variables that are specific to your organization. One 
of those variables is your migration goals; some goals take longer 
to achieve than others. For example, if your goal is to completely 
transition off Oracle Java as quickly as possible, you’ll have a dif-
ferent migration plan than an organization that is primarily seek-
ing support for legacy applications running older versions of Java 
like Java 6 and 7 and would prefer a phased approach over a longer 
period of time.

Introducing the Three-Phase  
Migration Process

After you’ve identified your goals, the methodology we suggest 
for migrating from the Oracle Java Development Kit (JDK) can be 
broken down into three stages:

1. Discovery. Identify which versions of Java are being used by 
which applications and on which machines within your 
organization, including cloud instances. You’ll use this 
inventory to create a migration plan.

2. Execution. For each machine that requires a Java runtime, 
install the same version (or versions) of the OpenJDK 
distribution you choose.

3. Validation. Test your applications to verify that everything 
works as expected.

The rest of this chapter covers the discovery stage, where a lit-
tle bit of additional attention can have the biggest impact on 
 shortening your migration time frame and eliminating issues. 
Chapter 3 walks you through the execution and validation stages.

Making an Inventory of JDKs  
Currently in Use

The first stage is often the most time-consuming in a JDK migra-
tion because of the variety of JDK versions in use. Typically, when 
a new application is deployed, it uses the latest version of the JDK 



CHAPTER 2  Preparing for Your Migration      13

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

at that time and continues to use it even as newer versions of Java 
are released. This is quite logical, because it has been tested with 
the deployed version.

Assuming the application works without issue, there is no 
requirement to update its JDK version. An update is required only 
when security patches and bug fixes are no longer available for 
the version in use.

Building your inventory
To create a complete JDK usage inventory, you must examine each 
machine in your estate that runs any Java Virtual Machine (JVM)–
based applications. This can be straightforward if you use IT 
asset management (ITAM) tools to monitor software usage. Many 
enterprises deploy these tools to ensure that they’re complying 
with licensing terms and conditions. These tools can quickly pro-
duce a report showing which machines have which versions of 
Java installed.

Even with a report like this, however, producing a definitive 
inventory of JDKs in use may not be straightforward. For exam-
ple, many enterprises use standard builds for server and desktop 
deployments. These may include a Java runtime even where no 
Java applications will be used.

Many users won’t be using ITAM software, so they’ll need to 
perform a manual inventory of machines. Tools are available to 
assist with this. These tools can scan the filesystem of a machine, 
looking for a Java executable and recording the version string 
when it’s run. They can also scan the process table to determine 
whether Java applications are running and which JDK they use. 
Take care in analyzing these results — applications may be used 
only when required. If an application isn’t running at the time the 
process table is being scanned, it won’t be included.

Deciding which JDKs to include
The process of choosing which JDKs to include is similar to one 
you might follow when dealing with a collection of cords and 
power adapters for mobile devices. Over time, you build up a 
collection of different adapters, each applicable to one or more 
devices. When clearing out your collection, you must determine if 
each is still required. The same goes for JDKs; you must figure out 
which ones still have a purpose and which ones don’t match up 
with anything you still run.



14      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Typically, when a JDK is installed using an automated installer 
like a Microsoft Software Installer (MSI) file on Windows or a Red 
Hat Package Manager (RPM) file on Linux, it becomes the default 
Java runtime. However, some applications may be installed using 
a bundled JDK that is used only for that application. In such 
 situations, the JDK may be included in the application’s support 
contract. In many (perhaps most) cases, maintaining that sup-
port is desirable and you won’t want to migrate that application. 
When compiling the inventory, you’ll want to be aware of such 
applications and, when in doubt, confirm the terms of ongoing 
JDK  support with the application provider.

With the continued trend of moving server applications to the 
cloud, it’s also necessary to include JDKs used in these environ-
ments. Most cloud providers supply and support Java runtimes as 
part of their platform as a service (PaaS) offering. However, there 
may be situations where a different JDK is used (for example, to 
deliver better performance).

It’s becoming increasingly common to use microservice archi-
tectures to deploy applications into the cloud. Doing so separates 
monolithic applications into multiple, loosely coupled services 
packaged in containers. A container is a fully functional, portable, 
virtualized computing environment surrounding a service and 
isolating it from other services. This is a very flexible deployment 
method, because it eliminates the need to ensure that the cor-
rect versions of libraries, frameworks, and runtimes are availa-
ble where the service is deployed. All dependencies, including the 
JDK, are bundled into the container. Once again, when creating a 
JDK inventory, all containers that include a Java runtime should 
be added.

Deciding what information to  
collect about each JDK
For each entry in the inventory, there should be the following 
fields at a minimum.

 » Type: A physical desktop, physical server, cloud instance, 
and/or container.

 » Access details: The credentials needed to access a physical 
machine or cloud instance via a network connection with 
sufficient privileges to permit the JDK’s installation. For 



CHAPTER 2  Preparing for Your Migration      15

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

containers, these details will relate to how the container 
image is generated. This will probably be via continuous 
integration/continuous delivery (CI/CD) tooling and should 
include information enabling you to configure a different  
JDK for inclusion in the image.

 » Operating system (OS): Which OS is in use, plus additional 
details about it, such as the edition, version, build number, 
and whether it’s 32 bit or 64 bit. The OS will typically be 
Windows, macOS, or Linux. For Linux, you should also note 
the distribution (distro) because it may make a difference in 
the installation format.

 » Automated or manual install: Whether the installation  
will take place using an installer. If the JDK doesn’t use an 
installer, this field should also note the location in which the 
JDK should be manually unpacked.

 » JDK version: This field should also include the installed 
update level, such as JDK 8u202.

At the end of this process, you should have a complete list of all 
places where the Oracle JDK is located.

Recognizing the Risks of  
Older Technologies

Next, you should start thinking about the potential problems that 
may crop up based on what you found when making your inven-
tory. This section describes some potential issues that you may 
encounter when migrating applications from the Oracle JDK to 
OpenJDK distributions. Altogether there are about a dozen possi-
ble edge cases to be aware of. It’s unlikely any of these will affect 
your applications. Almost all relate only to desktop applications 

For classification purposes, you may want additional fields. Visit 
www.openjdk-migration.com/inventory-worksheet for a com-
plete worksheet.

If you have a large Java deployment, you’ll be looking for addi-
tional resources to assist with the inventory. You can find sample 
worksheets and a survey to use with application owners at www.
openjdk-migration.com/application-owner-survey.

http://www.openjdk-migration.com/inventory-worksheet
http://www.openjdk-migration.com/application-owner-survey
http://www.openjdk-migration.com/application-owner-survey


16      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

that use specific deployment technologies. If your organization 
is among those still using desktop apps, you’ll want to be aware 
of these.

Very old versions of Java
Java started life in the mid-’90s and has continued to be devel-
oped ever since. Its popularity took off quickly, resulting in people 
using early versions of the platform to deploy enterprise-wide 
and mission-critical applications. Most JVM-based applications 
are replaced or upgraded to a newer version of Java before support 
for the JDK version expires. However, some applications continue 
to use very old versions of the Java platform, and that can be a 
problem.

Through Azul’s Platform Core support, you can continue to receive 
all scheduled and out-of-bounds updates to JDK 6 and 7, even 
though Oracle and other distributions have discontinued support. 
(OpenJDK started with Java SE 7, but a project for Java SE 6 was 
subsequently created. You can read more about the early days of 
Java and OpenJDK in Appendix A.)

Versions of Java prior to JDK 6 were never released as open source, 
so there is no way to provide distributions with backported secu-
rity patches or bug fixes. The last public update to JDK 5 was in 
November 2009 (which was when Sun Microsystems was still 
developing Java).

Because of Java’s excellent backward compatibility, it’s quite 
probable that something that runs on JDK 5 (or even earlier ver-
sions) will run without issue on JDK 6. However, if you’re still 
running applications from JDK 1.0 or 1.1, these may not work on 
JDK 6.

Oracle JDK-specific features
Prior to JDK 11, the Oracle (and Sun Microsystems) JDK included 
features that were not included in the core OpenJDK project. The 
following sections cover these features.

JavaFX
JavaFX is a cross-platform graphical user interface (GUI) tool kit 
for Java. Although it was never included in the Java SE specifica-
tion or the main OpenJDK project, it was released as a separate 
open-source project in 2011, called OpenJFX.



CHAPTER 2  Preparing for Your Migration      17

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

If you’re using JavaFX in your applications, you’ll want to use 
a distribution like Azul that provides OpenJDK builds, including 
JavaFX libraries. These use the OpenJFX source code and build 
scripts to provide identical functionality to the JavaFX provided in 
older (JDK 8, 9, and 10) builds from Oracle.

Migrating JavaFX-based applications from the Oracle JDK to an 
alternative distribution is very straightforward, provided you use 
a build with JavaFX libraries. There is no requirement to change 
any application code or recompile the application.

Applets
Applets are small applications designed to add interactive con-
tent to a web page. Introduced in the mid-’90s, applets ran in 
web browsers and reached their heyday in the late ’90s — until 
browsers withdrew support for them due to security concerns. 
Vulnerabilities became apparent both in applets (backdoor, cross-
site scripting, and cross-site request forgery) and in the Java 
Runtime Environment (JRE) and browser (with attackers being 
able to track users, perform malicious exploits, and escape from 
sandboxes).

Applets should be considered a dead technology for several 
reasons:

 » The Java plug-in, which is necessary to run applets in a 
browser, was deprecated in Oracle JDK 9 and removed from 
Oracle JDK 11.

 » Even if you’re using Oracle JDK 8 through a Java SE subscrip-
tion, Oracle ended support for the Java plug-in in March 
2019.

 » Oracle has left the components required to run applets in 
Oracle JDK 8, but only for the Windows platform. These 
components were removed from Linux and macOS in July 
2020 (JDK 8u261).

 » Due to security and stability implications, no current 
mainstream browser supports the Netscape Plugin 
Application Programming Interface (NPAPI), which is 
necessary to use the browser plug-in. Therefore, it simply 
isn’t possible to run an applet within most modern browsers, 
including Google Chrome and Mozilla Firefox. Support for 
the last legacy browser that still supported the NPAPI (and, 



18      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

thus, the Java plug-in), Microsoft Internet Explorer 11, ended 
in June 2022. Since the Java plug-in remains closed source, 
only two options remain for continuing to run applets on a 
supported JDK:

• Convert the applet from being browser-based to running 
with a Java Web Start environment.

• Continue using your existing Java plug-in but modify 
registry entries to direct it to a different Java runtime.

For a migration worksheet on applets, see www.openjdk- 
migration.com/applets.

Java Web Start
In the early days of Java, internet speeds were very slow. Many 
people used dial-up connections that would run at a maximum 
speed of 57 kilobits per second (Kbps). Adding applets to web 
pages increased the amount of data that needed to be down-
loaded quite substantially, resulting in a much slower browsing 
experience.

Part of this problem was that every time a user visited a web 
page that included an applet, the code for the applet needed to be 
downloaded, regardless of whether it had changed since the last 
visit.

The alternative to applets was a full-blown application. Although 
this meant that the code for the application didn’t need to be 
downloaded each time it was used, there was no simple way to 
determine if there was an update. If a user were told an update 
was available, they would need to manually download and install 
the application.

Java Web Start aimed to correct such problems by providing the 
best of both applets and applications through a web-centric 
application model.

Java Web Start provides a Java Network Launch Protocol (JNLP) 
client. JSR-56 specifies the JNLP and, at its core, is a JNLP file, 
which is an Extensible Markup Language (XML) document. The 
JNLP file describes an application in terms of the resources it 
requires, such as Java Archive (JAR) files, icons, Java runtime, and 
so on. All resources are specified as a Uniform Resource Locator 
(URL), enabling the application to be accessed remotely like an 
applet (but without using a web browser). Java Web Start caches 

https://www.openjdk-migration.com/applets.
https://www.openjdk-migration.com/applets.


CHAPTER 2  Preparing for Your Migration      19

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

the resource files on the user’s machine. Each time the appli-
cation is started, it checks the locally held resources against the 
remote ones to see if there has been any update. If not, it uses the 
local files, so no network activity is required. This also enables 
the application to be used when there is no network connection.

IcedTea-Web
The Java Web Start included in the Oracle JDK remains closed 
source, so it isn’t included in standard OpenJDK distributions. For 
users who need to continue using the Java Web Start functionality, 
there is an alternative, open-source project called IcedTea-Web.

IcedTea-Web processes JNLP files, as specified by JSR-56, and 
offers the most commonly used features of Java Web Start. How-
ever, it isn’t a drop-in replacement, so an application’s config-
uration may sometimes require changes to make it work in the 
same way as the Oracle Java Web Start.

When switching to IcedTea-Web, enable logging so that more 
detail about any issues will be provided. You can do this through 
the itw-settings utility included in IcedTea-Web. Alternatively, 
you can manually edit the deployment.properties file.

These are the most common issues with switching from Java Web 
Start to IcedTea-Web:

 » Custom security certificates: By default, IcedTea-Web 
assumes that a trusted certificate has signed all JAR files. If 
the JAR files are self-signed, you must add the certificates to 
the certificate store. You can configure that using the 
itw-settings utility.

 » Network proxy settings: This can be set manually or use 
the same settings as browsers using itw-settings.

 » Suppressing security checks on manifests: You may need 
to do this if a signed JAR file’s manifest is missing attributes 
such as permissions.

 » Unsigned JAR files: For applications that use unsigned JAR 
files, you must modify the deployment.properties file for 
each user. You should change the deployment.security.
level value to ALLOW_UNSIGNED and add the setting 
deployment.itw.ignorecertissues with a value of True. 
In addition, you must include the -nosecurity command-
line flag when calling javaw.exe.



20      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Some Less-Common Considerations
This section lists the furthest corners of edge cases for OpenJDK 
migration and offers some possible solutions.

Font rendering
Prior to JDK 8, the Oracle JDK used a closed-source font rendering 
engine called Ductus. OpenJDK provided an open-source equiv-
alent called Pisces. From JDK 11, both the Oracle JDK and Open-
JDK use the same engine called Marlin. In most situations, this 
makes no difference. However, for a font that doesn’t include a 
bold  version, the rendering engine will extrapolate the plain font 
to bold. On JDK 8, this may appear different when using the Oracle 
JDK and an OpenJDK distribution.

The only solution to this is to use a font that includes a bold 
version.

Lucida fonts
Oracle JDK 8 and earlier included a set of default Lucida fonts. 
These fonts are used if no suitable alternative can be found on the 
target deployment system. Lucida fonts are commercial fonts and 
are not included with a default OpenJDK distribution.

Azul can provide a Commercial Compatibility Kit (CCK), which 
includes these fonts, if an application requires them.

NTLM authentication
In Oracle JDK 8 update 201, Oracle introduced a new security 
authentication parameter for Windows NT LAN Manager, jdk.
http.ntlm.transparentAuth. By default, this parameter is set 
to disable, which differs from earlier updates where the value 
was effectively allHosts. This change may affect applications, 
including those deployed with Java Web Start/IcedTea-Web.

You can resolve the issue by modifying the jre/lib/net.proper-
ties file in the JDK installation. The value can be set to allHosts, 
but the recommended setting is trustedHosts.

For a migration worksheet on Java Web Start, go to www.openjdk-
migration.com/web-start.

http://www.openjdkmigration.com/web-start
http://www.openjdkmigration.com/web-start


CHAPTER 2  Preparing for Your Migration      21

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Stack Overflow provides more detail on configuring trusted hosts 
for NTLM: https://stackoverflow.com/questions/56840215/ 
ntlm-no-longer-working-with-java-webstart-following- 
a-java-upgrade.

Custom security configurations
The JDK uses a security sandbox model to limit an application’s 
access to resources such as files, network connections, and so on. 
Some applications may require you to modify these settings in 
order to use custom security certificates and to change resource 
restrictions.

When migrating from the Oracle JDK, you’ll need to replicate any 
of these changes for the new JDK installation.

Java Access Bridge
This is a technology that exposes the Java Accessibility API 
through a Windows-native library, enabling assistive technolo-
gies on Windows systems to work with Swing and Abstract Win-
dow Toolkit (AWT)–based applications.

When migrating to a build of OpenJDK, you should use the  
jabswitch command to configure the Java Access Bridge.

Java Control Panel
You can use the Java Control Panel to configure parts of the Java 
environment, such as security certificates and Java Web Start. 
OpenJDK doesn’t include it, so it won’t be part of a standard dis-
tribution. You can manage certificates manually using the JDK 
keytool utility, and IcedTea-Web has its own configuration util-
ity, described earlier.

SNMP JMX Gateway
SNMP JMX Gateway is not included in OpenJDK, so it won’t be 
part of a standard distribution. In the unlikely event that an app 
requires it, you can use the open-source library SNMP4J as a 
replacement. Consult the documentation for this library to learn 
how to install and configure it as an alternative.

https://stackoverflow.com/questions/56840215/ntlm-no-longer-working-with-java-webstart-following-a-java-upgrade
https://stackoverflow.com/questions/56840215/ntlm-no-longer-working-with-java-webstart-following-a-java-upgrade
https://stackoverflow.com/questions/56840215/ntlm-no-longer-working-with-java-webstart-following-a-java-upgrade


22      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Version string incompatibility
Some applications use the version string that the Java runtime 
provides to determine whether a supported JDK is in use. In the 
event that an application does rely on a particular version string, 
you should contact the application vendor.

Windows registry keys
The Oracle JDK installation for Windows adds registry keys that 
an application can use to locate the Java runtime. There are 
three settings, all located in HKEY_LOCAL_MACHINE/SOFTWARE/ 
JavaSoft/Java Development Kit:

 » JavaHome: The full path of the installed JDK.

 » MicroVersion: Since JDK 5, this is always zero.

 » RuntimeLib: The full path of the Java runtime dynamic link 
library (DLL).

Azul Zulu Builds of OpenJDK add similar registry settings to 
ensure compatibility. Other distributions may not.

Handling Third-Party Applications
It’s very common for users to buy applications instead of devel-
oping them. This can be very cost-effective to not have to develop 
and maintain bespoke software in-house.

Many such applications that use Java will specify a required 
 version of the JDK and even possibly a minimum version update 
level. (This is no different from the way other applications specify 
a minimum version of Windows or Linux.)

The user must source the JDK and make it available to the appli-
cation. Application providers often state in their documentation 
that they’ll support the application only if you’re using the correct 
JDK. This is sensible for the application developer, because it can 
help eliminate issues caused by using out-of-date or inappropri-
ate Java runtimes. Because the Oracle JDK has been so ubiquitous 
in the past, many application providers have stated that only the 



CHAPTER 2  Preparing for Your Migration      23

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Oracle JDK will qualify for support. With the recent changes to the 
Oracle JDK licensing and pricing, however, users are increasingly 
demanding that they provide support when running on alterna-
tive JDKs.

Many application vendors will now provide support so long as 
the app is running on a Technology Compatibility Kit (TCK)– 
certified build of OpenJDK.  Because they can trust such distri-
butions to be functionally identical to the Oracle JDK, they don’t 
need to be  worried about testing multiple distributions with their 
applications.

Sometimes an application will state that certain OpenJDK distri-
butions are valid for support but not the one you want to use. In 
this case, you should contact the application vendor to have them 
add the distribution you want to use to their list. As long as it’s 
TCK tested, the vender should have no objection.

In any large organization, where multiple Java applications are 
in use, applications will have different owners. When planning 
a successful migration, it’s essential to include all concerned 
 parties — that is, all owners of the applications that must use the 
new Java runtime.



CHAPTER 3  Migrating Your Applications      25

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

 » Surveying the list of available formats

 » Updating the JDK

 » Making sure your applications perform 
as expected

Migrating Your 
Applications

With a survey of your Java runtime usage complete, it’s 
time to move on to switching all your Java Development 
Kits (JDKs). This chapter explains the process of choos-

ing a format, selecting an update version (probably the latest one 
available), and testing your applications post-installation to make 
sure everything is working as expected.

Reviewing Available Formats
This chapter’s examples use Azul Zulu Builds of OpenJDK (also 
referred to as the Zulu JDK) as the new JDK.  You can use any 
JDK distribution you prefer, but other distributions may differ in 
some ways, such as installation formats or supported platforms. 
(Chapter 4 explains how to select the right distribution for your 
organization.)

You can download Azul Zulu Builds of OpenJDK in all the formats 
available for the Oracle JDK.  The following sections review the 
formats available and provide a few key facts about each one.



26      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Windows
Windows JDKs typically come in two installation formats:

 » For a manual install, archive files are available in ZIP format. 
Copy the file to the appropriate location and extract the file.

 » Microsoft Software Installer (MSI) files are available for 
automated installation, including updating registry entries 
and environment variables. You can copy MSI files to 
individual machines, or you can install remotely using 
msiexec and psexec.

Linux
Linux JDKs are available in six installation formats:

 » Archive files are available either in ZIP or compressed TAR 
files. As with Windows, you can copy these to the appropri-
ate location and extract the file.

 » Debian Format Package (DEB) files are available for auto-
mated installation using the dpkg command on Debian-
based distributions.

 » Red Hat Package Manager (RPM) files can be used for 
automated installation using the rpm command.

 » Two Azul package repositories are available for Linux: one 
for use with apt (for Debian-based distributions) and one for 
use with yum (for Red Hat–based distributions). You can find 
instructions for configuring and using these on the Azul 
website.

macOS
macOS JDKs can be installed using three formats.

 » Archive files are available either as ZIP or compressed TAR 
files. As with Windows and Linux, copy these to the appropri-
ate location and uncompress them.

 » Apple Disk Image (DMG) files can be used for automated 
installation, either graphically or via hdiutil attach from 
the command line.



CHAPTER 3  Migrating Your Applications      27

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Docker
Multiple image files are available from Docker Hub to install  
a JDK.

Zulu Docker files are available from Docker Hub for Alpine,  
CentOS, Debian, and Ubuntu Linux distributions. You can use 
these files as the base for building containerized applications and 
services.

Performing the Update
OpenJDK distributions do not support patch-in-place for updates; 
applying an update to the JDK requires installing a whole new 
JDK. This means the migration installation process can be treated 
exactly like deploying a new update, except that it installs the 
Zulu JDK update instead of the Oracle JDK update. Figure 3-1 pro-
vides an example of the process.

Unless there is a specific bug causing application stability issues, 
users won’t see any pressing need to move to a new version of 
Java, even if they are using quite an old version. However, from 
an administrative standpoint, it’s always a good idea to install the 
latest update when migrating to a new OpenJDK distribution, to 
maintain the highest level of security for your applications.

FIGURE 3-1: Performing an update on a server running Java applications.



28      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

In the vast majority of cases, the update process is straight-
forward, and you don’t encounter any issues. However, some-
times an update includes changes that can change an application’s 
behavior.

Let’s look at a particular example using the very commonly used 
Apache Tomcat servlet engine. Suppose we have Tomcat 8 run-
ning on Oracle JDK 8u202. This is not the most recent release of 
Tomcat, but it works perfectly for our application, so it hasn’t 
been upgraded. We have a servlet running that takes data from the 
client, makes a query in a MySQL database, and returns a result.

For our migration, we install Zulu 8 update 372 and restart the 
server. However, when we try to use the application, we get an 
error message telling us there was a communication link fail-
ure. This has nothing to do with switching from Oracle to Zulu. 
Instead, it results from a change made in JDK 8 update 291 from 
October 2021. In this update, the default settings for Trans-
port Layer Security (TLS) were changed to disable TLSv1.0 and 
TLSv1.1 by default. Therefore, to get the application working as 
before, we must modify the jre/lib/security/java.security 
file and remove the TLS references from the jdk.tls.disabled 
Algorithms setting.

When something like that occurs, it’s important to verify that the 
problem is caused by using a different update of the JDK rather 
than a different distribution. Having a commercial support pro-
vider who can provide older updates can be extremely beneficial 
in this case. Simply install the same update level of JDK, and then 
retest the application. In our example case, the Azul support team 
would be able to provide details of the configuration changes 
required to resolve the issue.

After installing the new JDK, you’ll need to make any required 
changes to switch applications to use it. For example, it may be 
necessary to change the JAVA_HOME environment variable and the 
launchers used for individual applications, such as the Tomcat 
servlet engine. The safest option is to change this environment 
variable on all migrated machines.



CHAPTER 3  Migrating Your Applications      29

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Testing Your Applications
After installation, you should test all applications that have been 
switched to the new JDK to ensure correct functionality. You 
probably won’t observe any different behavior unless changes 
have occurred between updates.

The testing process will vary greatly depending on each appli-
cation. Internally developed applications may have extensive 
regression tests that can fully exercise all parts of the application 
to verify correct behavior. Third-party applications (either open-
source or commercial) may have a set of standard tests that you 
can run. If not, an experienced user should run the application 
and try as many functional aspects as possible.

After all tests have passed to each user’s satisfaction, the migra-
tion is complete. You’ll now be in a strong position to maintain 
your Java estate to the highest levels of security and stability, 
often more so than before. In addition, you’ll have a clear pic-
ture of where the Java runtime is in use and more experience in 
upgrading machines to the latest Java update.



CHAPTER 4  Evaluating OpenJDK Distribution Providers      31

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

 » Differentiating between OpenJDK 
distributions

 » Answering commonly asked questions

 » Comparing OpenJDK distributions

Evaluating OpenJDK 
Distribution Providers

OpenJDK is an open-source project, and anyone is free to 
download the source code for a specific version of the Java 
Development Kit (JDK). Using the provided build scripts, 

anyone can compile all parts of a JDK for mainstream platforms, 
such as Windows running on a 64-bit Intel processor. These exe-
cutables and libraries can be packaged and provided as an OpenJDK 
distribution, and there are lots of different distributions available. 
This means you have your choice of providers — from free and 
unsupported to commercial providers that offer all the support of 
Oracle Java SE and more.

It also means that it’s worthwhile educating yourself on how pro-
viders of OpenJDK differ from each other. The OpenJDK distribu-
tion you choose can affect the ease of your migration — and have 
an even greater impact on your Java estate’s stability and security.



32      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Differentiating Between OpenJDK 
Distributions

Because all OpenJDK distributions use the same source code as 
a starting point, which distribution you choose will depend on a 
variety of other considerations.

Here are some of the most important factors to consider:

 » Which versions are supported? As of March 2021, there 
were 20 versions of Java, including three releases known as 
Long-Term Support (LTS) releases. It’s easy to find support 
for the most current LTS release, but the farther back you go, 
the fewer providers there are to support that version. For 
example, Azul is one of only two providers that support  
JDK 6 and 7.

 » Which platforms are supported? Most users run applica-
tions on mainstream operating systems like Linux and 
Windows and use common processors like those from Intel 
and AMD. If your environment includes less-common 
platforms like Automatic Resource Management (ARM)–
based processors or perhaps the Solaris operating system, 
will the distribution provide builds for these?

A MULTITUDE OF BINARIES
Commercial support providers typically offer updates for just a frac-
tion of the JDKs that are used in production.

There are more than 2,000 possible binaries if you only consider LTS 
versions for the most popular Linux, Windows and macOS operating 
systems; for 32-bit and 64-bit x86 and ARM architectures; and for just 
the JDKs and Java Runtime Environments (JREs) delivered in the most 
popular file types. If you expand this criteria, there are potentially 
thousands more.

Organizations like Azul also provide binaries for additional versions  
of Java (Azul currently supports 6 Java versions, 14 operating systems, 
7 architectures, and 4 packages).



CHAPTER 4  Evaluating OpenJDK Distribution Providers      33

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » How long will a version be supported? Certain versions are 
classified as LTS, but how long is long? Different distributions 
may offer various maintenance and support lengths. Some 
distributions may also commit to supporting a version after they 
stop providing the scheduled updates. In this passive support 
phase, users can still report issues and, if necessary, the build 
provider may provide a special update containing a fix.

 » Are all builds Technology Compatibility Kit (TCK) tested? 
Each version of Java has its own suite of TCK tests. TCK 
testing is vital to ensure that the binary distribution being 
delivered implements the specification exactly, providing 
full compatibility.

 » How quickly are updates available? The scheduled JDK 
updates are developed through the OpenJDK project and 
embargoed by the OpenJDK Vulnerability Group until a 
preplanned date and time. What is a distribution’s track 
record for providing updates within hours of the embargo 
lifting? Has it seen long delays in the past? Is there a time-
based service-level agreement (SLA) specifying when an 
update is guaranteed to be available?

Update speed is important because, after the embargo is 
lifted, details of security vulnerabilities are made public, and 
those who want to do so can start developing exploits. If 
updates only become available days or even weeks later, the 
possibility of systems being compromised rises exponentially.

 » Are stabilized updates available? Oracle Java SE provides 
two formats for each update: the Critical Patch Update (CPU; 
a stabilized security update) and Patch Set Update (PSU; the 
full update). To maintain the maximum level of JDK security, 
both are essential. Only Oracle and Azul provide both CPU 
and PSU updates.

Azul sets the industry standard for delivering security updates to 
OpenJDK on a strict SLA. Since Oracle Java SE was launched, Azul 
has delivered stabilized security updates within an hour of the 
lifting of the embargo.

Answering Common Questions
In addition to the questions in the preceding section, organiza-
tions that are planning a migration frequently share common 
concerns. Here are several broader questions that often come up 



34      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

about the impact of switching from the Oracle JDK to another 
OpenJDK distribution.

Will I lose functionality if I switch?
From JDK 11 onwards, Oracle JDK has used only the source code 
included in the relevant OpenJDK repository. Prior to that, Oracle 
also included several features that were not open source.

These features are almost all associated with desktop applications 
and deployment technologies. The two most obvious are the Java 
plug-in (required to run applets in a browser) and Java Web Start. 
Chapter 2 provides some specifics on both of those.

The Oracle JDK features that don’t apply just to desktops include 
Mission Control and the Java Advanced Management Console. 
Oracle open-sourced Mission Control, a low-overhead, interac-
tive monitoring and management tool for Java workloads, and 
you can obtain builds from Azul and other vendors. The Java 
Advanced Management Console, a sysadmin tool, is available only 
from Oracle.

What about Oracle applications?
If you’re using Oracle Java applications, you should check care-
fully to determine whether the JDK is included in the support con-
tract. If it isn’t included, consider which distribution is the best 
choice in this situation.

What’s my risk of regression when 
using alternatives to Oracle?
Provided the OpenJDK distribution you choose is built from  
OpenJDK source code and is TCK tested, there is essentially zero 
chance of a functional regression created by swapping one distri-
bution for another. Applications will behave no differently when 
running on an Oracle JDK alternative.

Only in a very extreme case would you notice a performance 
regression where an application may be slower or faster than 
before. This would only be because a different compiler or com-
piler flag was used during the build process.



CHAPTER 4  Evaluating OpenJDK Distribution Providers      35

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Will I need to move to the  
latest Java JDK version?
All distributions of OpenJDK provide extended maintenance for 
the LTS versions of Java in the form of updates. How long these 
updates will continue to be delivered depends on the distribution.

If you’re using an older version of the Java JDK that is still being 
maintained, your application will continue to receive the maxi-
mum level of security and stability from its runtime. There is no 
need to update to the latest Java version.

For some users, the availability of newer features and potentially 
improved performance will be worth investing time and resources 
to migrate and test applications. It’s important to understand, 
though, that moving to the latest Java version isn’t essential.

Will I need to recompile my 
application?
From the very beginning, Java used the slogan “Write once, 
run anywhere.” The cornerstone of this claim was that all Java 
 runtimes would provide identical functionality. The same byte-
codes would execute in the same way regardless of the operating 
system and chip architecture.

This concept applies equally when moving to a different distribu-
tion of OpenJDK. As long as both the current and new distribu-
tions are of the same Java version and have passed all the TCK 
tests, you won’t need to recompile any application code.

Sometimes changes made in an OpenJDK update can impact appli-
cation stability. In this case, it may be necessary to change con-
figuration parameters, but it still won’t be necessary to recompile 
the application.

Will I need to rewrite or modify  
my application code?
There is no need to recompile code when switching OpenJDK dis-
tributions. By extension, therefore, it isn’t necessary to modify or 
rewrite any application code as long as the Java version of both 
distributions is the same.



36      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Even if the Java version is not the same, the code is still probably 
okay. The Java platform maintains excellent backward compat-
ibility across versions. As a result, code written for one version of 
Java will almost always compile and run on a newer version.

Comparing OpenJDK Distributions
Figure 4-1 shows some of the most popular OpenJDK distributions 
and how they compare from the perspective of the things we dis-
cuss in this chapter.

A full circle means that the feature/capabilities are covered  
100 percent in that distribution. An empty circle means that the 
feature/capabilities are not covered at all. A half- or quarter- 
circle indicates partial coverage. For example, Azul, Red Hat, and 
Eclipse Temurin offer IcedTea-Web as an alternative to Java Web 
Start, so they get 50 percent credit for the applets and Java Web 
Start feature. Oracle gets 100 percent credit, even though it has 

RECOMPILING CAVEATS
If you do recompile existing code with a newer JDK, here are a few 
things to watch out for:

• If the code is very old, you may find that certain variable 
names are no longer valid. Java SE 1.4 introduced assertions, and 
assert became a reserved word. Similarly, in Java SE 5, the intro-
duction of enumerations resulted in enum becoming a reserved 
word, so not valid as a variable name.

• In the unlikely event that you’ve used a single underscore as  
a variable name, you’ll need to change that. As of JDK 9 this is 
no longer allowed.

• Prior to JDK 9, many application programming interface (API) 
elements (classes, interfaces, methods, and so on) had been 
deprecated for removal, but none had ever been removed. In 
JDK 11, many legacy APIs covering functionality like CORBA, JAX-B, 
and JAX-WS were removed. Other JDK versions have removed a 
few little-used APIs. You can download these libraries separately 
and include them via changes to your build scripts.



CHAPTER 4  Evaluating OpenJDK Distribution Providers      37

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

discontinued these features, because older builds of Oracle JDK 
with these features work just fine. Note that although current 
feature and LTS releases provided by all five distributions are TCK 
tested, there are no longer TCK tests available for Java 6 and 7, 
because these have reached “end of life” from an Oracle support 
perspective.

For a full discussion of the features and capabilities compared in 
this matrix and a comprehensive listing of OpenJDK distributions, 
see www.openjdk-migration.com/openjdk-distributions.

FIGURE 4-1: An OpenJDK Distribution Comparison Matrix.

https://www.openjdk-migration.com/openjdk-distributions


CHAPTER 5  Exploring the Benefits of Commercial Support      39

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

 » Securing Java apps by applying quarterly 
updates

 » Backporting security fixes

 » Understanding stabilized security builds

 » Maintaining bundled technologies

 » Reporting bugs and receiving fixes

 » Protecting your code from GPL 
contamination

 » Getting help during your migration

 » Previewing new technologies

Exploring the Benefits of 
Commercial Support

One key distinction between the various OpenJDK providers 
is whether they provide commercial support — and if they 
do, the nature and extent of that support.

The OpenJDK project doesn’t provide any formal support. Users 
can report any bugs through the Oracle Java Bug Database. Still, 
there are no guarantees or service-level agreements (SLAs) that 
specify when (or even if) a bug will be addressed and potentially 
fixed. Even if someone else has reported a bug and it has been 
fixed, it may be necessary to wait up to three months for the next 
scheduled update to include the fix. This won’t be acceptable if 
the bug means that mission-critical applications are unable to 
deliver critical functionality.

Bug reporting — and timely bug fixing — are benefits of com-
mercial support for OpenJDK.  But the services of the leading 



40      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

enterprise providers of OpenJDK support extend far beyond typi-
cal help-desk support.

In this chapter, you see how providers like Azul enable you to 
scale your Java team by assuring the stability and security of your 
Java Development Kit (JDK), maintaining bundled technologies, 
protecting your intellectual property (IP), assisting with migra-
tion planning, and delivering innovation directly to your doorstep.

Applying Quarterly Updates
The OpenJDK project releases updates four times a year, on the 
third Tuesday of January, April, July, and October. Changes are 
applied directly to the current version of Java at that time as well 
as to the most current Long-Term Support (LTS) version. This 
means that anyone can download the OpenJDK source code and 
build their own updated JDK, and it will always be current with 
security patches, bug fixes, and enhancements.

The problem is that building your own JDK isn’t feasible for most 
organizations. It’s a little like assembling a working car from 
parts, assuming all the parts are digital but require the same level 
of know-how about mechanical engineering, electrical engineer-
ing, physics, materials science, safety regulations, and testing. 
For a good portion of the 2010s, organizations that ran Java apps 
relied on Oracle for their JDKs — unless they needed a very high-
performing JDK, in which case they turned to a provider like Azul.

This started to change with the release of OpenJDK 9 in September 
2017, when Oracle introduced the concept of a long-term release 
on a fixed schedule.

Until OpenJDK 9, the gap between Java releases varied. JDK 6 
shipped in 2006, followed by JDK 7 in 2011 and JDK 8 in 2014.

Feature releases would receive two updates before the next fea-
ture release. Oracle LTS releases would receive updates for five 
years with an additional three years of passive support (no sched-
uled updates). The feature releases were targeted at developers so  
they can leverage new features in production as soon as possible.  
The LTS releases were for enterprises that preferred stability  
so that they could run multiple large applications on a single 
shared Java release.



CHAPTER 5  Exploring the Benefits of Commercial Support      41

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The new release cadence and the new distinction between feature 
releases and LTS releases paved the way for Oracle to announce a 
paid support offering in the form of an Oracle Java SE subscription 
the following year.

Several license and pricing changes later, Oracle settled into the 
cadence of free updates noted earlier. The current version of Java 
(the feature release) and the long-term release were updated on 
a quarterly basis. Organizations who were using older versions of 
Java could pay Oracle for support, but many also began turning to 
alternative providers who supported more versions on more plat-
forms and who moved more quickly to new architectures, such as 
Apple silicon ARM-based Macs and Amazon Web Services (AWS) 
Graviton2 and Graviton3.

Getting the support you need to remain on older or less common 
versions of Java, or on the newest processor architectures, is one 
reason enterprises turn to commercial support.

Protecting Older JVMs
Following the introduction of LTS releases and the Java SE 
 subscription, organizations quickly learned that getting the high-
est levels of reliability from their Java runtimes required more 
than free updates. They needed timely access to updates on a 
continuous basis  — and they needed those updates backported 
to older versions. This was important because a newly discovered 
vulnerability that got fixed in a current feature release probably 
also existed in many older Java versions, too.

Vulnerabilities affecting older Java releases continue to be 
reported. In 2022, vulnerabilities were reported as far back as Java 6,  
as well as in Java 7 and 8. However, Oracle stopped  premier  
support for Java 7 in July 2019 and ended extended support in July 
2022. In March 2022, Oracle ended premier support for Java 8, once 
the most popular release, and still in use in 33 percent of applica-
tions in production (according to New Relic’s 2023 State of the Java 
Ecosystem,  published in April 2023).

Java’s built-in security measures like strong data typing make 
it naturally more robust than some other languages, so it can 
be tempting to take the security of your JDK for granted. But  



42      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

you’d be running an unnecessary risk to do so. Since  Oracle 
stopped providing free updates in 2019, there have been 139 secu-
rity vulnerabilities fixed in OpenJDK 8, including 21 classified as 
critical or high severity by the Common Vulnerability Scoring 
System (CVSS), published in the National Vulnerability Database 
(https://nvd.nist.gov). Figures 5-1 through 5-3 show the fre-
quency of new common vulnerabilities and exposures (CVEs) in 
JDK 6, 7, and 8 by severity score and update. The size of the circles 
corresponds to the number of vulnerabilities with that severity 
score in that release.

FIGURE 5-1: New CVEs in JDK 6 from 2019 to 2023.

FIGURE 5-2: New CVEs in JDK 7 from 2019 to 2023.

https://nvd.nist.gov/


CHAPTER 5  Exploring the Benefits of Commercial Support      43

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Receiving backported security fixes is another reason enterprises 
turn to commercial support.

Reducing Risk with Stabilized  
Security Builds

Receiving backported security fixes from a commercial provider is 
important, and how those fixes are delivered is equally important.

Quarterly updates typically contain several hundred changes. The 
majority are bug fixes and minor enhancements, with security 
patches typically numbering less than 20 per release. In the last 
ten years, the largest number of security patches in an update 
was 37. This means that the risk of a security patch impacting the 
stability of an application is much lower than the risk from a non- 
security-related change.

For this reason, Oracle and Azul offer two versions of each update:

 » Critical Patch Update (CPU): This update contains only the 
changes related to security patches.

 » Patch Set Update (PSU): This update includes all the 
changes, security, bug fixes, performance enhancements, 
and everything else.

FIGURE 5-3: New CVEs in JDK 8 from 2019 to 2023.



44      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Since the end of free updates to Oracle JDK 8, there has been at 
least a 25 percent chance that a PSU would experience a regres-
sion. Not only can regressions affect application uptime, but 
rolling back an update can expose an organization to known  
vulnerabilities and create compliance risk.

Securing your JDK without impacting application stability can be 
an important benefit of commercial support.

Updating Bundled Technologies
Just before the annual JavaOne conference in 2007, the manage-
ment at Sun Microsystems was looking around for something to 
include as a keynote-worthy announcement. On very short notice, 
the decision was made to announce a new graphical application 
development platform that used the Java runtime. This project, 
dubbed F3 (for “Form follows function”) was created primarily by 
a single employee, Chris Oliver, and quickly rebranded as JavaFX.

Although JavaFX ran on the Java Virtual Machine (JVM), it was 
developed using a non-Java language that looked a lot like  
Java Script (but was subtly different). This proved too hard to sell 
to Java developers, so two years later (again at JavaOne), JavaFX 2 
was announced. This was a complete rewrite of the platform as a 
set of Java class libraries. Over time, Oracle added more function-
ality to JavaFX, including features like 3D rendering.

WHY CPUs MATTER
An example of how CPUs can protect an organization from a regres-
sion is a bug fix that was delivered in update 252 of JDK 8 in July 2020. 
The fix had unintended consequences: It prevented certain popular 
applications, like Hadoop Cluster and Solr, from running.

The security-only update, technically update 251, was delivered on the 
PSU from the previous quarter. It didn’t contain the breaking change. 
Therefore, the security-only update could safely be deployed into  
production without compromising application stability. This situation 
clearly illustrates how organizations benefit when both format 
updates are available.



CHAPTER 5  Exploring the Benefits of Commercial Support      45

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Although JavaFX was not included in the OpenJDK main project, 
Oracle bundled it with the Oracle JDK for Java 8, 9, and 10. Compa-
nies that built applications on these distributions need more than 
commercial support for older Java — they need formal support 
for JavaFX.

If a bug affects an application that relies on JavaFX, this can be 
reported and fixed in the same way as the JDK. (See Chapter 2 for a 
more detailed explanation about migration concerns for JavaFX.)

Extending the life of bundled technologies is another reason to 
choose commercial support.

Encountering New Bugs
Many millions of Java users work with hundreds of thousands of 
applications, including some of the most demanding on the inter-
net (such as credit card fraud detection for Mastercard and movie 
streaming on Netflix). Over nearly three decades of use, thou-
sands of bugs have been reported and fixed in Java. This process 
continues as Java continues to evolve.

Although the JDK is updated regularly, there may still be situa-
tions where an application encounters a bug in it that has not been 
reported or fixed. What a user can do at this point will depend on 
which distribution they’re using.

Free distributions do not offer any formal support channel. In this 
case, your options are limited to reporting the problem details 
through the Oracle Java Bug Database. And even after submitting 
a bug, there is no guarantee it will be resolved in the next update 
(or ever).

For commercially supported distributions of OpenJDK, a  formal 
support channel will be available to receive reports of issues 
24/7/365 via a web form or email. (Some support organiza-
tions may also include phone access.) Each case will be assigned 
an identifier, often referred to as a support ticket. Many support 
contracts will include an SLA specifying how quickly the support 
team will respond to a ticket. This may be as little as an hour, so 
customers will know that for mission-critical applications, prob-
lems will get attention as quickly as possible.



46      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The best support teams will provide deep root cause analysis. 
They’ll go beyond the immediate symptoms of a problem and 
investigate the underlying causes of problems or issues. This 
approach can save time and resources by eliminating the need for 
multiple fixes. When the solution to the problem is upstreamed to 
the reference implementation, everyone who uses that version of 
Java benefits.

Of course, the customers of the support team that developed the 
fix won’t have to wait until the fix is included in an OpenJDK 
update. They can receive the fix directly from their support pro-
vider. Likewise, the customer can expect to receive major out-of- 
cycle bug fixes when they’re critically necessary.

Getting expert help on a firm SLA, out-of-cycle bug fixes, and 
more is a common reason to get commercial support.

Understanding and Addressing 
GPL Contamination

Open source has become a fundamental part of how the software 
development community operates. Freely reusing source code 
from other developers, rather than having to continually rein-
vent the wheel and write code that has been written many times 
before, has had a profound impact on software reliability and 
developer productivity.

When using open-source software, it’s essential to understand 
the terms of the original author’s license. However, doing so can 
become more complex and more fraught with potential problems 
the more aggregation of code that occurs.

The primary license used for OpenJDK distributions or runtimes 
is the GNU Public License version 2 with Classpath Exception 
(GPLv2+CPE). However, some of the code contributed to the proj-
ect uses other licenses, such as Apache and Berkeley Software 
Distribution (BSD). For example, parts of the Extensible Markup 
Language (XML) processing libraries use the Apache license.

Not all open-source licenses are the same; some are more permis-
sive than others. GPLv2 imposes quite strict requirements on how 
code can be reused. The most significant of these requirements 



CHAPTER 5  Exploring the Benefits of Commercial Support      47

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

is the copyleft nature of the license. Copyleft grants the right to 
freely distribute and modify the source code but mandates that 
the rights granted by the GPL must be preserved in any derivative 
works using the code. This is often referred to as a viral license, 
because it forces anyone using code licensed under the GPL to 
license their code in the same way.

If OpenJDK distributions used only the GPLv2, it would force 
developers to make their code available when they don’t neces-
sarily want to.

Consider the following scenario: Let’s say you decide to ship 
your application bundled with an OpenJDK runtime. Doing this 
removes ambiguity and can increase reliability by making your 
code easier to test. You know precisely which runtime will be used 
and can test against that. However, by bundling your application 
with OpenJDK runtimes, you’ve created a derivative work, and the 
GPL now applies to your application. Anyone can now request a 
copy of the source code your team spent so much time and effort 
developing! OpenJDK would lose its appeal to many users if this 
were the case.

To remedy this situation, the OpenJDK license includes the Class-
path Exception (CPE). Any application code on either the class 
path or module path is not affected by the copyleft nature of the 
GPLv2.

Some people who look at this assume that all GPLv2 licensed code 
in OpenJDK includes the CPE, but this is not the case. For exam-
ple, if you search the HotSpot (JVM) source code directory of more 
than 3,000 files, only 5 include the CPE. Conversely, looking at 
the java.base library source, just over 50 of the 3,000-plus files 
don’t have the CPE. This is because the CPE is only required when 
application code touches the JDK code directly.

For commercial OpenJDK distributions, it’s essential that all files 
that need the CPE have the CPE.  If even one file that requires 
the CPE doesn’t contain it, and your application or one of your 
included libraries happens to make use of an application pro-
gramming interface (API) in that file, the licensing implication 
for your applications can be as bad as having no CPE at all for the 
whole JDK.



48      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Some commercial distributions of OpenJDK perform  careful 
scanning of the source code used to build them (both static 
and dynamically created) and will guarantee no exposure to the 
copyleft nature of the GPLv2. As a commercial feature, distribu-
tions may go even further and provide indemnification against 
claims through GPL contamination.

Building on open source without the risk of copyleft contamina-
tion of your code is a valuable benefit of commercial support.

Planning with Expert Guidance
You may be surprised that in a book about migrating to OpenJDK, 
migration assistance shows up toward the end of a list of the ben-
efits of commercial support for OpenJDK.  For most providers, a 
migration support ticket is no different from any other support 
ticket. It will be handled according to the support tier you signed 
up for.

At Azul, we’ve found that what’s most helpful to our customers is 
assistance in planning their migration. Migrating itself is usually 
straightforward, but a good plan is still essential, particularly for 
companies that have been using Java applications for years on the 
desktop and on servers and, as a result, run on a variety of JDK 
versions.

The Azul Migration Workshop helps customers capture the scope 
of their migration, as well as the resources they need and the 
resources they have available. This enables them to build a real-
istic timeline and ensures they don’t miss any of the critical steps 
we’ve discussed here, such as taking a thorough inventory of 
their JDKs using IT asset management (ITAM) tools in combina-
tion with an application owner questionnaire. The workshop is 
customized so that each customer ends up with a comprehen-
sive migration plan that is ready to execute. (Learn more at www. 
openjdk-migration.com/azul-migration-workshop.)

Assistance with migration planning is another example of the 
value added by some commercial support providers.

https://www.openjdk-migration.com/azul-migration-workshop
https://www.openjdk-migration.com/azul-migration-workshop


CHAPTER 5  Exploring the Benefits of Commercial Support      49

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Leveraging Support for a Competitive 
Advantage

You could argue that assuring your JDK is patched against known 
vulnerabilities is the first job of an OpenJDK support provider, 
followed closely by offering stabilized builds to lower the risk of 
regression. But providers differ in how they deliver against these 
goals. In addition, some providers offer additional benefits  — 
such as support for bundled technologies, SLA-driven responses 
to bug reports, and IP indemnification. But what can really set a 
provider of OpenJDK apart is its role in driving Java innovation 
and providing its customers with previews of new technologies 
that can offer a competitive advantage.

Major enhancements to OpenJDK around security and start-up/ 
warm-up time can have a long incubation time as community 
projects before they’re included in a feature release or an LTS 
release. One example of this is the OpenJDK project Coordinated 
Restore at Checkpoint (CRaC).

The CRaC Project defines public Java APIs that allow for the 
co ordination of resources during checkpoint and restore opera-
tions. With CRaC, you can set a checkpoint at any point where an 
application can be safely paused. You can then use this checkpoint 
to reduce start-up and warm-up times by orders of magnitude. 
After about three years of community incubation, the first and 
only commercially supported CRaC-configured build was released 
by Azul in the form of a Java 17 Linux/x64 update (JDK version 
17.0.7+7). As part of that update, developers using this build can 
deploy applications using CRaC into production with confidence 
that updates will be provided by Azul.

Deploying new technologies to production with full commercial 
support is an important advantage of working with a commercial 
support provider.



CHAPTER 6  Choosing the Right Java Partner      51

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

IN THIS CHAPTER

 » Evaluating a potential partner’s track 
record

 » Getting references from other customers

 » Selecting an appropriate service level

Choosing the Right 
Java Partner

Once an organization interested in migrating to OpenJDK 
fully understands the three-step migration process and 
the straightforward path to migration success, another 

concern can rise to the fore.

Enterprises want to know if they can trust their business- critical 
Java applications to the care of a new provider. Java’s rapid 
 evolution has made it the language of choice for enterprise appli-
cations. It has also created a need for extensive knowledge and 
experience with Java that can be hard to find.

Creating a Java application is comparatively easy, but deep root 
cause analysis of issues affecting the JDK requires sophisticated 
knowledge of a highly complex, ever-changing system made up of 
seven million lines of code (and growing). Architectural changes, 
like the rise of microservices and serverless functions and con-
tainers, have created new performance challenges, too, and the 
move to the cloud has led to escalating costs — some of which 
can be reduced by faster code. Organizations that run on Java or 
maintain a significant Java footprint need more than a JDK help 



52      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

desk; they need a true Java partner. And, let’s face it, looking for 
a partner for any endeavor can be like going off on a quest for the 
holy grail. Luckily, there are signposts that point to a provider’s 
level of proficiency. We point these out in this chapter.

Evaluating a Track Record
Java is nearly 30 years old. Providers with real expertise have a 
track record of supporting the Java platform — and participating 
in the processes and standards bodies that move Java forward —  
extending back to the first complete release of OpenJDK’s source 
code in 2009. (You can read more about the history of OpenJDK in 
Appendix A.)

A key organization is the Java Community Process (JCP). 
 Originally created by Sun Microsystems in 1998, the JCP develops 
and maintains Java technology standards. It was designed as an 
open, inclusive, and collaborative process consisting of  working 
groups, expert groups, and an executive committee. The JCP’s 
 executive committee is responsible for approving Java Specifi-
cation Requests (JSRs) and reconciling discrepancies between 
 specifications and test suites.

Organizations and individuals who serve on the JCP’s executive 
committee are actively involved in determining Java’s future. 
There are also a handful of individuals and organizations whose 
continuous involvement with Java over the years has created a 
knowledge base that is rich and deep. Over time, they’ve ensured 
that Java remained relevant even as software went through a 
step change and client–server architectures were supplanted by 
cloud-based architectures utilizing microservices. Gil Tene, Azul’s 
cofounder and chief technology officer (CTO), was first elected to 
the JCP in 2011. He is one of the longest-serving members and has 
been recognized as Member of the Year.

Other activities of note include participating in the OpenJDK Vul-
nerability Group and actively contributing security fixes. Active 
involvement in online communities like Friends of OpenJDK 
(Foojay) and the Adoptium Working Group can serve as further 
proof points.



CHAPTER 6  Choosing the Right Java Partner      53

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Considering Customer References
A potential partner’s list of existing customers is a good place to 
start to find out if that organization is a fit for your own. It will 
help you determine the level of expertise they have in your par-
ticular industry and market. In addition, understanding the size 
and scope of existing support relationships will offer insight into 
whether a potential partner can handle the complexity of your 
own organizational needs.

Customer satisfaction is another component to pay attention to. 
It’s a leading indicator of a partner’s current level of service, and 
it can be a helpful macro data point when combined with testimo-
nials and direct references.

Deciding on a Service Level
The services offered by commercial support providers for Open-
JDK can vary quite a bit. Differences start with the breadth of Java 
versions and the associated platforms and underlying architec-
tures that are supported, as well as the length of support. It’s 
also important to understand how a provider defines support  
and whether those services are covered by a service-level agree-
ment (SLA).

Here are some differences in the delivery of OpenJDK support that 
you’ll want to consider:

 » Basic help-desk support versus deep root-cause analysis, 
dedicated account managers, monthly strategy calls, best 
practice consulting, and quarterly security briefings.

 » Quarterly updates delivered as a Patch Set Update (PSU) 
versus curated stabilized builds (which is what Oracle and 
Azul refer to as Critical Patch Updates [CPUs]).



54      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Updates that rely on “best effort” versus updates delivered 
on a strict SLA.

 » OpenJDK builds with known issues around GNU Public 
License (GPL) contamination versus builds that are 
indemnified.

These differences add up to fundamentally different views of the 
relationship between the OpenJDK provider and customers who 
run their business on OpenJDK. A true partnership will focus on 
achieving the most business value from Java, starting with your 
migration and continuing through the life cycle of your Java  
Virtual Machines (JVMs).



CHAPTER 7  Ten Questions for Your Next Request for Information      55

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 7

IN THIS CHAPTER

 » Asking the right questions

 » Understanding how the answers will 
affect your service

Ten Questions for 
Your Next Request 
for Information

There are a lot of Java partners out there who want your busi-
ness. How can you drill down in the stack to find the best 
one for your needs? It helps to know what questions to ask 

potential vendors in your requests for information (RFIs). The 
answers you receive will affect the quality of service you receive. 
Here are ten questions that can help you make the right decision:

 » Are your binaries Technology Compatibility Kit (TCK) 
tested? TCK tests are the suite of tests that ensure that 
distributions of each version of Java are compatible with 
each other. This testing drastically cuts down on incompat-
ibility issues.

 » What versions of Java do you support, and for how long? 
Even if you have a good idea of which versions of Java are 
running in your organization, working with a vendor who 
supports more versions will mean you’re prepared if you’re 
surprised by the results from your application inventory.



56      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » What operating systems and architectures do you 
support? In addition to the operating systems and chip sets 
currently in use in your organization, you’ll want a provider 
who supports operating systems and architectures that you 
may want to move to in the future.

 » Do you provide quarterly security updates on stabilized 
builds with a service-level agreement (SLA)? 
Organizations can minimize the risk of an expensive 
regression by updating to stabilized builds each quarter. 
These builds are binaries released the previous quarter as 
Patch Set Updates (PSUs). They’ve been used in production 
worldwide for three months. Also known as Critical Patch 
Updates (CPUs), stabilized builds provide security-only 
fixes — patches for new vulnerabilities reported and fixed 
during the most recent quarter. These ensure that your Java 
applications are secure and compliant with internal policies 
and, depending on your industry, external regulations.

 » Do you backport fixes to security issues in later releases 
to all supported versions on an SLA? It’s common for large 
organizations to have departments running on older 
versions of Java. To remain compliant with internal policies 
and external regulations, they need a vendor who backports 
patches for newly reported vulnerabilities. For example, a 
patch in Long-Term Support (LTS) 17, the current LTS release, 
may need to be backported to Java Development Kit (JDK) 8, 
an earlier LTS release that’s reaching the end of its life.

 » What is your track record for releasing binaries immedi-
ately following the OpenJDK Vulnerability Group lifting 
the embargo on quarterly updates? Even leading provid-
ers of OpenJDK can find themselves having to delay the 
release of new quarterly binaries by several days or even 
sometimes more than a week, often leaving deployments 
vulnerable to severe vulnerability exploits during the delay 
window. If the timely release of binaries matters to you, look 
for a provider with a track record for releasing binaries in 
under an hour.

 » Will you provide out-of-cycle updates for critical com-
mon vulnerabilities and exposures (CVEs)? Vulnerabilities 
with the highest scores in the Common Vulnerability Scoring 
System (that is, those described as “critical”) must be patched 
right away and may require an out-of-cycle fix. Otherwise, 
your organization could be exposed for weeks or months. 



CHAPTER 7  Ten Questions for Your Next Request for Information      57

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Providers committed to providing critical out-of-cycle fixes 
will keep your Java applications secure and ensure you stay 
in compliance.

 » Do you support optional components such as JavaFX? 
Over the years, more than 78 vulnerabilities have been 
reported that affect JavaFX. If you have applications that use 
components like JavaFX that are not included in OpenJDK, 
you need a JDK provider who will support those components 
with JavaFX-configured builds for your JDKs and Java Runtime 
Environments (JREs).

 » Do you provide indemnification in case of patent 
litigation? Patent indemnification protects software users 
against patent infringement claims. It means that your JDK 
provider will cover legal costs or damages if a third-party 
claims you’re infringing on their patents through your use  
of their JDK.

 » Do you provide indemnification against GNU Public 
License (GPL) contamination? Similar to patent indemnifi-
cation, indemnification can protect you in the case of GPL 
contamination that can result from copyleft licensing. With 
copyleft licensing, anyone who modifies or distributes the 
software must make their modification or distribution 
available under the same license. To prevent this, users of 
OpenJDK must rely on their provider to protect them by 
using the Classpath Exception (CPE). Providers who provide 
indemnification are offering to stand behind their distribu-
tions and protect their users from copyleft claims.

You can find a full-fledged sample request for proposal 
(RFP) in the online toolkit at www.openjdk-migration.com/ 
openjdk-support-sample-rfp.

https://www.openjdk-migration.com/openjdk-support-sample-rfp
https://www.openjdk-migration.com/openjdk-support-sample-rfp


APPENDIX A  A Brief History of Java      59

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Appendix A
A Brief History of Java

The origins of the Java platform can be traced back to the 
early ’90s, when internet users could be counted in the 
thousands and the first web browser had not yet been pub-

licly released.

Sun Microsystems, a company famous for UNIX workstations, 
allowed a small engineering team to go off and figure out what 
would be the next wave of computing. They designed a device that 
was similar in concept to today’s Apple iPad called the *7 (Star 
Seven). Unfortunately, this was when processor speeds, memory 
costs, and display technologies were not up to the task, so the 
device never saw the light of day. Part of the design, however, 
required a new programming language and runtime platform that 
would enable applications to be easily moved across a network 
and run without worrying about what hardware or operating sys-
tem was in use. The language and interpreter, created by James 
Gosling, was initially called Oak (after the tree outside his office 
window).

After unsuccessful attempts at promoting Oak for use in set-top 
boxes and interactive TV, the project was on the verge of being 
canceled. Then, in February 1995, John Gage, the director of the 
Science Office at Sun, gave a TED Talk that culminated in show-
ing Oak being used within a web browser. The demonstration 
showed a picture of a molecule that could be dragged, rotated, and 



60      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

mani pulated using the mouse. This was revolutionary! Suddenly 
web browsing, which had been like an electronic book, became 
interactive. The possibilities were limitless.

After rebranding due to trademark issues and negotiations with 
the fledgling browser company Netscape, Java was officially 
made public on May 23, 1995, with the first official release in  
January 1996. Two years later, in 1998, Sun released the first open 
specification.

Developers and users wanted Sun to go further with ceding con-
trol and make Java open source. But Sun continued to resist calls 
to release the source code to their Java Development Kit (JDK). 
This led some developers to work on an alternative implementa-
tion of Java that would be available under an open-source license. 
In 2005, the Apache Foundation (a nonprofit corporation that 
hosts multiple open-source projects) started Project Harmony. 
This used the code from the GNU Classpath project, a project to 
develop a complete set of standard Java class libraries, and added 
an implementation of the Java Virtual Machine (JVM).

Sun could see that eventually there would be an open-source 
 version of Java, so it would make more sense for it to be theirs, 
over which they could also maintain control.

At the annual JavaOne conference in 2006, Sun announced they 
were releasing the source code of their implementation of the JDK 
through a project called OpenJDK. As a result of the due diligence 
required to ensure Sun had the necessary rights to publish source 
code, it was not until April 2009 that a complete JDK could be built 
from the OpenJDK source (this was OpenJDK 7 build 39).

The initial version of Java provided through the OpenJDK was JDK 
7. A build of JDK 6 was made possible by creating a backward 
branch of OpenJDK 7, essentially removing what had been added 
to develop JDK 7.

The license chosen for the OpenJDK was the GNU Public License 
(GPL) version 2. The Classpath Exception was added to avoid 
application code having also to use the GPL.

Oracle, best known for its database products, agreed in April 2009 
to acquire Sun Microsystems. The deal closed in February 2010, 
and Java had a new home.



APPENDIX B  Optimizing the JVM for Lower Latency, Higher Throughput, and Faster Warm-up      61

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Appendix B
Optimizing the JVM for 
Lower Latency, Higher 
Throughput, and Faster 
Warm-up

The Java Virtual Machine (JVM) is very powerful, providing 
an ideal managed runtime environment for robust, scalable, 
and secure enterprise applications. However, although the 

JVM is a great choice for reliably running some of the world’s 
most demanding workloads, the standard OpenJDK JVM is not 
always a perfect choice.

During the last three decades, research on improving the JVM has 
focused on four areas: reducing latency, increasing throughput, 
achieving faster start-up/warm-up, and optimizing cloud work-
loads. There has been steady progress from release to release, and 
we’ve seen notable innovations over the years, summarized in 
this appendix.



62      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Minimizing Latency with 
Garbage Collection

One of the top benefits of Java is automatic memory manage-
ment. Memory management is a task that all programming lan-
guages must handle, and it’s also one of the most fundamental 
and error-prone aspects of software development.

Here’s how it commonly worked before Java. As a computer pro-
gram ran, it allocated memory to store data assigned to particular 
variables. Then, at a certain point, that data was no longer used 
by the program. In languages like C++, programmers wrote (and 
continue to write) code that explicitly released this memory to 
ensure that there was enough memory available. In doing so, they 
prevented memory leaks — and potentially disastrous crashes — 
as well as dangling pointers and other memory-related bugs.

Concurrent Mark Sweep  
garbage collection
With Java, memory is released automatically through a process 
known as garbage collection. Java’s approach to memory manage-
ment increases developer productivity and enhances the robust-
ness and reliability of Java applications.

But there are trade-offs. Garbage collection algorithms that 
support high throughput can increase latency. Conversely, an 
algorithm that supports lower latency can affect throughput. 
Algorithms that are highly optimized for throughput or latency 
can increase an application’s memory footprint.

The first garbage collection algorithms required applications to 
pause as they did their work. This was necessary to ensure the 
safety of data, which could otherwise be left in an inconsistent 
state. Stop-the-world pauses could be very short and not notice-
able to users, but some were long enough to introduce latency 
outliers and significant enough that applications failed to meet 
their requirements.



APPENDIX B  Optimizing the JVM for Lower Latency, Higher Throughput, and Faster Warm-up      63

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

To address this, the Concurrent Mark Sweep (CMS) garbage 
 collector was introduced in 2001 as part of HotSpot JVM (JDK 
1.4). CMS sought to minimize pause times by performing garbage 
 collection concurrently with an application’s execution. By using 
multiple garbage collection threads, CMS aimed to reduce stop- 
the-world pauses.

UNDERSTANDING LONG-TAIL 
LATENCY
A challenge operations teams sometimes face in understanding 
latency is that the effect of averaging latency over time can be quite 
small. This is because extreme latency effects are “long-tail” effects. 
They occur less frequently than average latency effects but can still be 
devastating to a business. In the following figure, the y-axis represents 
an arbitrary unit of time correlating to an application’s latency. The 
x-axis is the frequency of the latency effect for that unit of time by per-
centile. The dotted line is average latency for the entire application 
run. The solid line shows that latency is below average for more than 
70 percent of the time that an application is running, but then latency 
spikes sharply in the upper 90th percentile.



64      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

G1 Collector
JDK 9 replaced CMS with the G1 (Garbage-First) collector. G1 had 
several advantages, including its ability to:

 » Deliver more predictable pause times by dividing the heap 
(the region of memory used for dynamic memory allocation) 
into smaller regions.

 » Improve overall throughput by dynamically adjusting the 
duration of garbage collection cycles.

 » Promote more efficient heap utilization by compacting 
regions concurrently.

 » Support scalability with multithreading and parallelism.

 » Reduce administrative overhead.

Shenandoah and Z Garbage Collector
Despite these improvements, however, latency remained a prob-
lem. Red Hat’s Shenandoah and Oracle’s Z Garbage Collector 
(ZGC) are alternatives to G1 that use additional concurrent and 
pauseless technologies to reduce pause times, even for applica-
tions with very large heaps. In addition to concurrent compac-
tion, multithreading, and parallelism, they provide flexibility in 
heap sizing and use techniques such as load barriers, reference 
processing, and adaptive heuristics.

C4
Azul Platform Prime’s C4 Collector (for Continuously Concur-
rent Compacting Collector) is another advanced garbage collec-
tor. There are similarities between C4 and Shenandoah and ZGC, 
but C4 is designed to provide low-latency operations with high 
throughput while managing large heap sizes. Its emphasis on 
achieving pauseless operations leads to consistent low-latency 
behavior with no noticeable pauses even as applications scale to 
very large heap sizes — like multiple terabytes per JVM.

C4 uses a read barrier to support concurrent compaction, con-
current remapping, and concurrent incremental update tracing. 
With C4, enterprises can run two to five times more transactions 
through their infrastructure without pauses, jitters, or timeouts. 
From an operational perspective, engineers and developers spend 
less time tuning applications.



APPENDIX B  Optimizing the JVM for Lower Latency, Higher Throughput, and Faster Warm-up      65

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Increasing Throughput
Garbage collection algorithms can influence throughput. But 
other factors that affect throughput in Java applications have been 
the focus of sustained attention.

The problem of interpreting
In Java, source code is compiled into bytecode, which the JVM 
interprets at runtime. This system offers multiple advantages:

 » It enables Java applications to be platform independent.

 » It enables dynamic class loading at runtime.

 » It provides higher degrees of security because the JVM is 
executing bytecode in a controlled environment.

However, interpreting bytecode  — and then compiling it  — is 
resource-intensive and slow. Interpreting at runtime can create 
a bottleneck that reduces throughput, particularly in compute-
intensive tasks or tight loops.

The JIT compiler
One way Java compensates for the slowness of the interpreter is 
with just in time (JIT) compilation, which produces faster code. 
The JIT compiler identifies frequently executed bytecode routines 
and compiles them into native machine code on the fly.

In OpenJDK, the JIT compiler is based on the HotSpot JVM (first 
released with JDK 1.3). Although the HotSpot compiler has been 
continuously improved and updated, companies like Azul, IBM, 
and Oracle have introduced even more highly optimized compilers.

Techniques like speculative optimization leverage profile infor-
mation gathered at runtime to guide the JIT compiler. Statisti-
cal data identifies hot spots, optimizes frequently executed code 
paths, and eliminates unnecessary or infrequently used code 
branches.

Azul’s Falcon JIT Compiler
Azul’s Falcon JIT Compiler, a feature of Azul Platform Prime, uses 
advanced compilation techniques and optimizations to generate 



66      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

highly optimized native machine code, as well as specific optimi-
zations that target applications running on Azul’s Platform Prime.

Among the features that set Falcon apart are the compiler’s 
memory optimization techniques. For example, Native Memory 
Tracking (NMT) tools provide extended information on how the 
JVM and the compiler use native memory.

As of Stable Release 23.02, an ergonomics heuristic based on the 
number of Falcon compiler threaders control when Falcon resets 
internal caches. Armed with information on native memory usage, 
engineers can also explicitly adjust cash reset behavior with the 
FalconContextReset flag. The more often caches are reset, the 
less memory is consumed.

Reducing Application Warm-up Times
Using advanced compilers and garbage collection algorithms can 
lead to a dramatic performance boost. Recent studies have found 
that enterprises that invest in Java optimization can expect to see 
two times the throughput on the same infrastructure and elimi-
nate stop-the-world pauses.

Additional optimizations can also solve Java’s well-known start-
up and warm-up issues. These issues are one of the biggest chal-
lenges of using Java: Getting Java programs to run fast  — by 
optimizing for high throughput and low latency — can take some 
time.

First, Java applications need to start up. This involves activities 
like class loading, initializing static variables, and setting up the 
runtime environment. After start-up, an application is ready to 
run, but it isn’t optimized for peak performance. That happens 
during warm-up.

During warm-up, a program runs with typical or representative 
workloads while the JIT compiler gathers profiling data. By col-
lecting and analyzing the profiling information, the JIT compiler 
can dynamically recompile and optimize the code to improve exe-
cution speed and reduce interpretation overhead, as well as apply 
various other optimizations.



APPENDIX B  Optimizing the JVM for Lower Latency, Higher Throughput, and Faster Warm-up      67

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Warm-up can take seconds to minutes or even longer. Factors 
that influence these times include the size and complexity of an 
application and a workload, the performance of the underly-
ing hardware, and the efficiency of the JVM and its optimization 
strategies.

There are a few approaches you can take to shorten start-up and 
warm-up times.

Ahead of time compilation
Ahead of time (AOT) compilation involves converting Java instruc-
tions into native machine code ahead of execution so the applica-
tion can be run as a stand-alone binary. Oracle’s GraalVM native 
image solution utilizes AOT.

AOT significantly reduces start-up time and eliminates warm-up 
time. It can also help reduce an application’s memory footprint. 
It’s useful for applications that start up frequently or have strict 
performance and memory requirements.

But AOT has several significant drawbacks. AOT-compiled appli-
cations can’t be optimized at runtime and will not (generally) 
benefit from the dynamism of the JDK. Perhaps most important, 
AOT-compiled applications can also be difficult to debug. Because 
AOT compilation is done in the development environment, which 
can differ significantly from the production environment, the 
ability to easily debug issues can be a nonstarter.

ReadyNow!
An alternative to AOT is to persist the profiling information gath-
ered by the compiler so it doesn’t need to start from scratch with 
each subsequent run. With ReadyNow!, a feature of Azul Platform 
Prime, running an application generates a profile log that is con-
sumed and updated with subsequent runs. Warm-up improves 
each application run until optimal performance is reached.

This approach ensures consistent, peak performance and is great 
for applications that must meet specific levels of service such as 
financial trading systems. It’s far superior to other workarounds 
for slow start-up and warm-up like using synthetic data or over-
provisioning. Among additional benefits: Developers can get more 
control over Java compilation and can better manage runtime 



68      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

de-optimizations, which happen when compiled code doesn’t 
behave as expected and the JVM reverts to reinterpreting and 
recompiling the code.

ReadyNow! is a great choice for applications that are not required 
to start instantly and that have sufficient central processing unit 
(CPU) resources available to handle aggressive optimizations.

ReadyNow! performs two key functions:

 » It gives operations teams the ability to save and reuse 
accumulated optimization profiles across runs.

 » It provides a robust set of application programming inter-
faces (APIs) and compiler directives that give developers more 
control over the timing and impact of JVM de-optimization.

CRaC
Another way to achieve superfast start-up and warm-up using 
standard builds of OpenJDK is by using Coordinated Restore at 
Checkpoint (CRaC), which we discuss in Chapter 5. CRaC is a pro-
posed feature of OpenJDK that allows a running application to 
pause, take a snapshot of its state, and restart later, including on 
a different machine or in another time zone.

CRaC is currently available in Azul Zulu Builds of OpenJDK 17 
with CRaC support for Linux x86 and ARM architectures (64 bit).  
Amazon is also using the CRaC APIs in Amazon Web Services (AWS) 
Lambda SnapStart for Java functions. Frameworks like Micronaut, 
Quarkus, and Spring Boot also support CRaC or were planning to 
implement support at the time this book was published.

The main drawback to CRaC is its complexity. Compared to Ready-
Now!, CRaC requires a higher level of Java expertise. You must 
make code changes in libraries, frameworks, and applications to 
coordinate resource management during checkpoint and restore 
events. ReadyNow! does not require such code changes.

Optimizing Cloud Workloads
In the last few years, the location where applications are typically 
deployed has shifted from local to cloud-based hosts. Instead 
of provisioning physical machines in a data center, users are 



APPENDIX B  Optimizing the JVM for Lower Latency, Higher Throughput, and Faster Warm-up      69

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

switching to using public clouds. The utility-based pricing model 
can be much more cost-efficient — but not always.

Overprovisioning and resource waste
To gain the most benefit from the resource elasticity of a public 
cloud environment, monolithic applications are divided up into 
multiple container-based microservices. When a particular ser-
vice becomes heavily loaded and introduces a performance bottle-
neck, more service instances can be started to balance the load 
and eliminate the bottleneck. As the load reduces, instances can 
be stopped — providing a dynamic architecture exceptionally well 
suited to minimizing cloud infrastructure costs.

But the scenario in which cloud resources are balanced against 
load can be challenging to achieve. Applications typically con-
sume resources in spikes, and spikes can be notoriously difficult 
to predict.

As a result, companies routinely overprovision to ensure they’re 
prepared for unexpected increases in demand. A recent analysis by 
CAST AI found that, on average, 37 percent of the CPU resources 
provisioned for cloud-native applications are never used (see 
CAST AI, “The State of Kubernetes Report: Overprovisioning in 
Real-Life Containerized Applications,” 2011).

And, when surveyed by Forrester Consulting, two out of three IT 
professionals attributed cloud waste to idle or unused resources 
and 59 percent to overprovisioning (see “HashiCorp 2022 State of 
Cloud Strategy Survey,” 2022).

Azul’s Cloud Native Compiler
Azul’s Cloud Native Compiler (CNC) is a centralized service that 
directly addresses certain aspects of overprovisioning. When 
bytecodes need to be compiled, they’re sent to the CNC along with 
the necessary profiling data to allow optimization.

This compiling method offers significant benefits for microser-
vices architectures. When an instance of a microservice starts 
and warms up, the CNC compiles bytecodes for heavily used code 
and then caches the compiled code. When another instance of the 
same service is started, the CNC returns the code from its cache 
without the need for compilation. This reduces the time required 
for all subsequent invocations.



70      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

By moving the compiler’s work to the CNC, the JVM no longer 
must share its resources between the work of the application and 
compilation. This results in better performance during warm-up 
and eliminates the need to provision additional resources for a 
container that will be used only during warm-up.

You can do things like set higher CPU limits for horizontal 
 scaling, and by using the JIT optimizations delivered by CNC, 
you can get more traffic through each JVM and provision fewer 
instances overall to meet your demand. You end up with benefits 
 identical to those from highly optimized JVMs in more monolithic 
environments.

In a nutshell, faster Java code equals lower cloud costs. Instead 
of limiting utilization of your cloud instances, you can raise your 
threshold and still meet your performance service-level agree-
ments (SLAs) using the techniques in this appendix.



APPENDIX C  Runtime Security      71

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Appendix C
Runtime Security

We see an increasing number of cyberattacks, whether 
intended as malicious fun, for financial gain or even 
being politically motivated. It has never been more crit-

ical to ensure that all systems are maintained with the maximum 
level of security available.

One of the original design goals of the Java platform was to be able 
to move code securely around a network for execution. As a result, 
many aspects of the way the Java Virtual Machine (JVM) works, 
like bytecode verification during class loading, are designed with 
this in mind.

One common technique for improving security is to scan appli-
cation source code for vulnerabilities (technically referred to as 
common vulnerabilities and exposures [CVEs]). Another is to cre-
ate a software bill of materials (SBOM) that lists all libraries used 
when building an application, along with the version details.

Some of the most dangerous vulnerabilities are referred to as zero-
day. When a zero-day vulnerability is discovered, it can immedi-
ately be exploited and expose systems to remote code execution. 
Hackers can easily take control of machines and steal confidential 
data. In this case, the vulnerability is made public before a fix for 
it exists.

One example of this vulnerability that affected the Java environ-
ment was the Log4Shell exploit of the Log4j library. Log4j is an 
extremely popular library for generating and recording logging 
messages. When the vulnerability was reported, almost all Java 



72      OpenJDK Migration For Dummies, Azul Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

users had to identify whether and where they were using Log4j 
and then update the library with the necessary security patch.

Vulnerabilities in Java’s third-party libraries can be particu-
larly challenging because the infrastructure to address them is 
far less mature than the organizations and processes that ensure 
the security of OpenJDK. Table C-1 provides examples of high- 
risk vulnerabilities affecting Java libraries that were recently 
discovered.

Even with an SBOM for applications, locating all instances of an 
application containing new vulnerabilities in third-party librar-
ies can be difficult and time-consuming if sophisticated software 
asset management (SAM) software is not in use.

To simplify this, some commercial distributions of OpenJDK can 
offer ways to quickly identify machines using specific versions of 
libraries so the update process can be completed as promptly as 
possible.

TABLE C-1 Common Vulnerabilities and Exposures in  
the Java Ecosystem

CVE Score
Java-Related 
Component Vulnerability Type

CVE-2023-28462 9.8 Payara Server Java Naming and Directory 
Interface (JNDI) rebind

CVE-2023-32697 9.8 SQLite JDBC Remote code execution

CVE-2023-26049 5.3 Jetty Data exfiltration via 
cookies

CVE-2023-24815 5.3 Vert.x Classpath file exfiltration

CVE-2023-26919 7.2 Nashorn Nashorn sandbox escape

CVE-2022-41966 7.5 XStream Denial of Service (DoS)

CVE-2022-33915 7.0 AWS Log4j 
Hotpatch

Privilege escalation



APPENDIX C  Runtime Security      73

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Detecting Vulnerabilities in Production
Azul Vulnerability Detection is one such system. Azul Vulnerabil-
ity Detection uses information already available within the JVM as 
part of the class loader architecture to track all loaded libraries. 
This can even extend to providing details about which parts of a 
library (classes and methods) are in use versus ones that are part 
of the application but not in an execution path that has so far 
been followed. This information can be reported to a centralized 
cloud service. Because the information being used is already in the 
JVM, this is implemented without the use of a separately installed 
management agent, thus eliminating any performance impact of 
this monitoring.

When zero-day vulnerabilities like Log4Shell occur, users can 
request a real-time picture of exactly which applications running 
on which machines are using affected versions of Log4j. The sys-
tem administration team can quickly and efficiently work through 
the generated list to address the vulnerability and ensure the 
maximum level of security continues to be provided.



http://azul.com/g2-reviews


http://Dummies.com


WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Where to Go from Here

	Chapter 1 Replacing Oracle Java SE in the Enterprise
	Untangling Oracle Java SE Licensing and Pricing Complexity
	Taking Stock of Oracle’s Java SE Universal Subscription
	Replacing the Oracle JDK with OpenJDK
	Understanding TCK Testing and What It Means for Migration

	Chapter 2 Preparing for Your Migration
	Identifying Migration Goals
	Introducing the Three-Phase Migration Process
	Making an Inventory of JDKs Currently in Use
	Building your inventory
	Deciding which JDKs to include
	Deciding what information to collect about each JDK

	Recognizing the Risks of Older Technologies
	Very old versions of Java
	Oracle JDK-specific features
	JavaFX
	Applets
	Java Web Start
	IcedTea-Web


	Some Less-Common Considerations
	Font rendering
	Lucida fonts
	NTLM authentication
	Custom security configurations
	Java Access Bridge
	Java Control Panel
	SNMP JMX Gateway
	Version string incompatibility
	Windows registry keys

	Handling Third-Party Applications

	Chapter 3 Migrating Your Applications
	Reviewing Available Formats
	Windows
	Linux
	macOS
	Docker

	Performing the Update
	Testing Your Applications

	Chapter 4 Evaluating OpenJDK Distribution Providers
	Differentiating Between OpenJDK Distributions
	Answering Common Questions
	Will I lose functionality if I switch?
	What about Oracle applications?
	What’s my risk of regression when using alternatives to Oracle?
	Will I need to move to the latest Java JDK version?
	Will I need to recompile my application?
	Will I need to rewrite or modify my application code?

	Comparing OpenJDK Distributions

	Chapter 5 Exploring the Benefits of Commercial Support
	Applying Quarterly Updates
	Protecting Older JVMs
	Reducing Risk with Stabilized Security Builds
	Updating Bundled Technologies
	Encountering New Bugs
	Understanding and Addressing GPL Contamination
	Planning with Expert Guidance
	Leveraging Support for a Competitive Advantage

	Chapter 6 Choosing the Right Java Partner
	Evaluating a Track Record
	Considering Customer References
	Deciding on a Service Level

	Chapter 7 Ten Questions for Your Next Request for Information
	Appendix A A Brief History of Java
	Appendix B Optimizing the JVM for Lower Latency, Higher Throughput, and Faster Warm-up
	Minimizing Latency with Garbage Collection
	Concurrent Mark Sweep garbage collection
	G1 Collector
	Shenandoah and Z Garbage Collector
	C4

	Increasing Throughput
	The problem of interpreting
	The JIT compiler
	Azul’s Falcon JIT Compiler

	Reducing Application Warm-up Times
	Ahead of time compilation
	ReadyNow!
	CRaC

	Optimizing Cloud Workloads
	Overprovisioning and resource waste
	Azul’s Cloud Native Compiler


	Appendix C Runtime Security
	Detecting Vulnerabilities in Production

	EULA


OpenjoK
Migration






